Question Description
Directions: Use DeMoivre's theorem to find the indicated power of the complex #. Write the result in standard form. There are two problems:
(3-3i)^6
Find the fourth roots of 128(1+sqrt(3)i)

Final Answer

Thank you for the opportunity to help you with your question!
(3-3i)^6 = {3sqrt(2)}^6 (cos (-pi/4)+isin(-pi/4))^6 = 3^6*2^3 *(cos(-3pi/2)+isin(-3pi/2)) = 5832*(0+i) = 5832i
128(1+sqrt(3)i ) = 256 (cospi/3 +isinpi/3)
4th roots are
256^(1/4) (cos pi/12+i sin pi/12) =2 (cos pi/12+i sin pi/12) = {sqrt(6)+sqrt(2) +i(sqrt(6)-sqrt(2))}/2
2 (cos (pi/12+pi/2)+i sin (pi/12+pi/2)) = {-sqrt(6)-sqrt(2) +i(sqrt(6)+sqrt(2))}/2
2 (cos (pi/12+pi)+i sin (pi/12+pi)) = -{sqrt(6)+sqrt(2) +i(sqrt(6)-sqrt(2))}/2
2 (cos (pi/12+3pi/2)+i sin (pi/12+3pi/2)) = {sqrt(6)+sqrt(2) -i(sqrt(6)+sqrt(2))}/2
