# Linear Programming using Microsoft Solver

Jun 12th, 2015
KateS
Category:
Economics
Price: \$35 USD

Question description

Consider the following example that demonstrates optimization of transportation.

 There are production facilities in Battle Creek, Cherry Creek, and Dee Creek with annual capacities of 500 units, 400 units, and 600 units, respectively. The annual demands at warehouses in Worchester, Dorchester, and Rochester are 300 units, 700 units, and 400 units, respectively. The table below gives the unit transportation costs between the production facilities and the warehouses. Worchester Dorchester Rochester Battle Creek \$20/unit \$30/unit \$13/unit Cherry Creek \$10/unit \$5/unit \$17/unit Dee Creek \$15/unit \$12/unit \$45/unit

This problem can be modeled as a linear programming model as follows:

Decision Variables

Xbw = # of units to be transported from Battle Creek to Worchester

Xcw = # of units to be transported from Cherry Creek to Worchester

Xdw = # of units to be transported from Dee Creek to Worchester

Xbd = # of units to be transported from Battle Creek to Dorchester

Xcd = # of units to be transported from Cherry Creek to Dorchester

Xdd = # of units to be transported from Dee Creek to Dorchester

Xbr = # of units to be transported from Battle Creek to Rochester

Xcr = # of units to be transported from Cherry Creek to Rochester

Xdr = # of units to be transported from Dee Creek to Rochester

Objective Function

Minimize total annual transportation cost (\$):

= 20*Xbw + 10*Xcw + 15*Xdw + 30*Xbd + 5*Xcd + 12*Xdd + 13*Xbr + 17*Xcr + 45*Xdr

Constraints

Demand Constraints

Xbw + Xcw + Xdw ≥ 300 (demand at Worchester)

Xbd + Xcd + Xdd ≥ 700 (demand at Dorchester)

Xbr + Xcr + Xdr ≥ 400 (demand at Rochester)

Capacity Constraints

Xbw + Xbd + Xbr ≤ 500 (capacity at Battle Creek)

Xcw + Xcd + Xcr ≤ 400 (capacity at Cherry Creek)

Xdw + Xdd + Xdr ≤ 600 (capacity at Dee Creek)

Non-Negativity Constraints

Xbw, Xcw, Xdw, Xbd, Xcd, Xdd, Xbr, Xcr, and Xdr are ≥ 0

Integer Constraints

Xbw, Xcw, Xdw, Xbd, Xcd, Xdd, Xbr, Xcr, and Xdr are integers

The above model can be solved using the Microsoft Excel Solver tool.

(Top Tutor) Daniel C.
(997)
School: Rice University

Studypool has helped 1,244,100 students

## Review from our student for this Answer

Sigchi4life
Jun 14th, 2015
"Very Satisfied."

1828 tutors are online

Brown University

1271 Tutors

California Institute of Technology

2131 Tutors

Carnegie Mellon University

982 Tutors

Columbia University

1256 Tutors

Dartmouth University

2113 Tutors

Emory University

2279 Tutors

Harvard University

599 Tutors

Massachusetts Institute of Technology

2319 Tutors

New York University

1645 Tutors

Notre Dam University

1911 Tutors

Oklahoma University

2122 Tutors

Pennsylvania State University

932 Tutors

Princeton University

1211 Tutors

Stanford University

983 Tutors

University of California

1282 Tutors

Oxford University

123 Tutors

Yale University

2325 Tutors