How do I solve this math question?

label Mathematics
account_circle Unassigned
schedule 1 Day
account_balance_wallet \$5

Jun 16th, 2015

--------------------------------------------------------------------------------------------

m represents male life expectancy and

F represents female life expectancy.

(m, F) represent the points on the line.

(48, 51) and (75, 80) are points on the line.

So, slope of the line is

$\\ M=\frac{F_2-F_1}{m_2-m_1}\\ \\ M=\frac{80-51}{75-48}\\ \\ M=\frac{29}{27}\\$

We can use the point slope form of a line to find the equation of the line

The point slope form is

$\\ F-F_0=M(m-m_0)$

where M is the slope of the line

and $\\ (m_0,F_0)$ is a point on the line.

Here M = 29/27  and

take  $\\ (m_0,F_0)$ = (48, 51)

So, equation of the line is

$\\ F-51=\frac{29}{27}(m-48)\\ \\ F-51=\frac{29}{27}m-\frac{29}{27}\times48\\ \\ F-51=\frac{29}{27}m-\frac{464}{9}\\ \\ F=\frac{29}{27}m-\frac{464}{9}+51\\ \\ F=\frac{29}{27}m-\frac{464+51\times9}{9}\\ \\ F=\frac{29}{27}m-\frac{464+459}{9}\\ \\ F=\frac{29}{27}m-\frac{923}{9}\\ \\ F=1.07m-102.56\\$

So, equation is

F(m) =  1.07m - 102.56

----------------------------------------------------------------------------------

Jun 17th, 2015

Please ignore my previous answer. There was a mistake in it. The solution given below is the correct one.

----------------------------------------------------------------------------------

m represents male life expectancy and

F represents female life expectancy.

(m, F) represent the points on the line.

(48, 51) and (75, 80) are points on the line.

So, slope of the line is

$\\ M=\frac{F_2-F_1}{m_2-m_1}\\ \\ M=\frac{80-51}{75-48}\\ \\ M=\frac{29}{27}\\$

We can use the point slope form of a line to find the equation of the line

The point slope form is

$\\ F-F_0=M(m-m_0)$

where M is the slope of the line

and $\\ (m_0,F_0)$ is a point on the line.

Here M = 29/27  and

take  $\\ (m_0,F_0)$ = (48, 51)

So, equation of the line is

$\\ F-51=\frac{29}{27}(m-48)\\ \\ F-51=\frac{29}{27}m-\frac{29}{27}\times48\\ \\ F-51=\frac{29}{27}m-\frac{464}{9}\\ \\ F=\frac{29}{27}m-\frac{464}{9}+51\\ \\ F=\frac{29}{27}m+\frac{-464+51\times9}{9}\\ \\ F=\frac{29}{27}m+\frac{-464+459}{9}\\ \\ F=\frac{29}{27}m+\frac{-5}{9}\\ \\ F=\frac{29}{27}m-\frac{5}{9}\\ \\ F=1.07m-0.56\\$

So, equation is

F(m) =  1.07m - 0.56

----------------------------------------------------------------------------------

Jun 17th, 2015

...
Jun 16th, 2015
...
Jun 16th, 2015
Sep 22nd, 2017
check_circle