# Discrete Mathematics 4 questions

Anonymous
timer Asked: Feb 5th, 2019
account_balance_wallet \$5

### Question Description

do the home work

Discrete Mathematics (MAT 214) Homework 3 Complete the following problems on a separate sheet of paper. Write as much as possible for full credit, including calculator work. This assignment is due on Wednesday, February 6th . 1) Let Q(n) be the predicate “n2 ≤ 30.” a) Write Q(2), Q(−2), Q(7), and Q(−7), and indicate which of these statements are true and which are false. b) Find the truth set of Q(n) if the domain of n is Z, the set of all integers. c) If the domain is the set Z+ , the set of all positive integers, what is the truth set of Q(n). 2) Rewrite each of the following statements in the form “∀ a) Every real number is positive, negative, or zero. b) The number −1 is not equal to the square of any real number. , .” 3) Let D = {−48, −14, −8, 0, 1, 3, 16, 23, 26, 32, 36}. Determine which of the following statements are true and which are false. Provide counterexamples for those statements that are false. a) ∀x ∈ D, if x is odd then x > 0. b) ∀x ∈ D, if x is less than 0 then x is even. c) ∀x ∈ D, if x is even then x ≤ 0. d) ∀x ∈ D, if the ones digit of x is 2, then the tens digit is 3 or 4. e) ∀x ∈ D, if the ones digit of x is 6, then the tens digit is 1 or 2. 4) Write a formal negation for each of the following statements: a) ∀ fish x, x has gills. b) ∀ computers c, c has a CPU. c) ∃ a movie m such that m is over 6 hours long. d) ∃ a band b such that b has won at least 10 Grammy awards.
Discrete Mathematics (MAT 214) Valid Argument Forms The following is a list of common Valid Argument Forms. Given any assumptions (premises) in the given form, we can always conclude on the given conclusion. Modus Ponens p→q p ∴ q Modus Tollens p→q ∼q ∴ ∼p Generalization p ∴ p∨q q ∴ p∨q Specialization p∧q ∴ p p∧q ∴ q Conjunction p q ∴ p∧q Elimination p∨q ∼q ∴ p Transitivity p→q q→r ∴ p→r Proof by Division into Cases p∨q p→r q→r ∴ r Contradiction Rule ∼p → c ∴ p p∨q ∼p ∴ q

CathieH
School: Duke University

Hello, I am through with the work. Please find it in the attached document below. Am here to help in future when you have more work. Thanks and good luck in your education.

Running head: DISCRETE MATHEMATICS

1

Discrete Mathematics
Name of Student
Name of Professor
Course Title
Date

DISCRETE MATHEMATICS

2

QUESTION 1
1. Let Q(n) be th...

flag Report DMCA
Review

Anonymous
Tutor went the extra mile to help me with this essay. Citations were a bit shaky but I appreciated how well he handled APA styles and how ok he was to change them even though I didnt specify. Got a B+ which is believable and acceptable.

Brown University

1271 Tutors

California Institute of Technology

2131 Tutors

Carnegie Mellon University

982 Tutors

Columbia University

1256 Tutors

Dartmouth University

2113 Tutors

Emory University

2279 Tutors

Harvard University

599 Tutors

Massachusetts Institute of Technology

2319 Tutors

New York University

1645 Tutors

Notre Dam University

1911 Tutors

Oklahoma University

2122 Tutors

Pennsylvania State University

932 Tutors

Princeton University

1211 Tutors

Stanford University

983 Tutors

University of California

1282 Tutors

Oxford University

123 Tutors

Yale University

2325 Tutors