Standard Deviations of Five Possible Investments

User Generated

NobfbyhgrIbqxn

Business Finance

Description

Follow the instruction to answer 13 questions based on the dataset and reading materials. 200words for each question

I have attached the reading material and the data needed.

Please read all materials carefully before you placed your bid.

This is a financial investment master course. Please don't place your bid if you are non finance majored.

All the work must be original and professional

Turnitin report is required


Unformatted Attachment Preview

MGSM836 Investment Management T1 2019 Individual Assignment Instructions Notes: - These instructions are to be read in conjunction with the Darden Case Study Portfolio Selection and the associated excel workbook As described in the case, there are two clients to be addressed in this assignment – the 28 year old professional manager and the 60 year old retiree (Clients) There are six parts to the assignment. These parts are designed to step through the portfolio analysis and should be addressed in sequence Investment recommendations MUST include supporting reasons The Individual Assignment has a total possible mark of 60 The Individual Assignment has a unit assessment weight of 35% P a r t 1: (10 marks total) 1.A Using the stock return data provided, calculate the returns for a portfolio invested equally in the three stocks. This portfolio will be referred to as the equally weighted portfolio (EWP). Calculate the mean (average) return and standard deviation of the realized returns for each stock, the S&P 500 index, and the EWP. (5 marks) 1.B Compare and contrast the means and standard deviations of these five possible investments and make a recommendation for each of the Clients. (5 marks) Part 2: (10 marks total) 2.A Calculate the correlation between the three stocks, the S&P 500 and the EWP. (3 marks) 2.B Using the template provided (two asset portfolio), construct a graph that shows the relation between the expected returns (vertical axis) and standard deviations (horizontal axis) of pairs of the stock investments (all three pairs). (3 marks) 2.C Discuss inferences arising from the correlations between the individual stocks and from the correlation between the EWP and the S&P 500 index. (4 marks) page 1 of 2 Part 3: (10 marks total) 3.A Using the template provided (three asset portfolio), construct a graph that shows the expected returns and standard deviations of combinations of the three stocks arising from the allocation of weights to each stock. (5 marks) 3.B Restricting yourself to the above combinations of the three stocks, make a recommendation for each of the Clients. (5 marks) Part 4: (10 marks total) We can expand the set of portfolio combinations by considering the addition of a risk free asset (such as a USA government bond). This risk free asset can be combined with the market portfolio to generate another set of possible investments. This addition to the portfolio graph is referred to as the capital market line. 4.A To the graph prepared in Part 3, add the capital market line. Assume that the return on the bond is 0.45%. (3 marks) 4.B Consider all the possible investments you have identified (the three individual stocks, all combinations of the three stocks and the capital market line) and make a recommendation for each of the Clients. (7 marks) Part 5: (10 marks total) 5.A Using regression analysis (see the regression tool from the Data Analysis Toolkit in Excel) calculate Beta for each stock. (5 marks) 5.B With reference to the three calculated Beta, discuss inferences in relation to risk. Compare these inferences with those made in Part 1.B. (5 marks) Part 6: (10 marks total) 6.A For Harris, calculate the expected monthly return expressed as a function of S&P 500 Index returns and assuming that the monthly risk free rate is 0.45% and the monthly risk premium is 0.50% (refer equation (4) in the case). (5 marks) 6.B As a function of S&P 500 Index returns, graph the actual returns for Harris (a scatter plot) and the expected returns for Harris (a straight line). Comment on the usefulness of expected returns as a predictor of future returns. (5 marks) oooOOOooo page 2 of 2 rP os t UV2565 Rev. Aug. 29, 2017 PORTFOLIO SELECTION AND THE CAPITAL ASSET PRICING MODEL op yo What portfolio would you recommend to a 28-year-old who has just been promoted to a management position, and what portfolio would you recommend to a 60-yearold who has just retired? The perennial question in the world of personal finance seems to be “What should I buy?” A far better question would be “What portfolio should I hold?” The research exercise described in this note provides an opportunity to explore the reasoning behind this distinction. More importantly, it will become apparent that the answers to the portfolio question provide critical insights into how we measure risk and determine appropriate rates of return for a given level of risk. In particular, the analysis described here will develop familiarity with the capital asset pricing model (CAPM), a model of appropriate returns based on the relation between the returns on an individual asset and the returns on a broad market portfolio. No tC The analysis described here is organized around the question stated at the top of this page. To focus our analysis, we will ignore issues related to the amount of wealth these individuals might have, the tax situation each may face, and specific expenditure plans they might have. Simply assume that both have relatively large amounts to invest, but not so large that they are indifferent to the returns they might earn. Both would, of course, prefer higher returns to lower returns. The newly promoted manager, however, would be able to accept a higher degree of risk than the retiree. Do The analysis will proceed as follows. The accompanying spreadsheet (UVA-F-1604X) presents historic returns of three stocks as well as the returns on the S&P 500 index. You will be guided through the analysis of these data. Each analysis will be accompanied by a series of questions. The first set of steps examines various portfolios of investments; the second set explores the implications of the portfolio results for individual stocks. This technical note was prepared by Associate Professor Marc Lipson. Copyright 2009 by the University of Virginia Darden School Foundation, Charlottesville, VA. All rights reserved. To order copies, send an e-mail to sales@dardenbusinesspublishing.com. No part of this publication may be reproduced, stored in a retrieval system, used in a spreadsheet, or transmitted in any form or by any means—electronic, mechanical, photocopying, recording, or otherwise—without the permission of the Darden School Foundation. This document is authorized for educator review use only by MARK STEWART, University of New South Wales until Jul 2018. Copying or posting is an infringement of copyright. Permissions@hbsp.harvard.edu or 617.783.7860 Portfolio Selection rP os t -2- UV2565 We will begin this analysis by considering just single investments and then proceed to add additional alternatives, including portfolios combining individual investments.1 The analysis will make use of basic statistical descriptions of returns and employ a very simple regression analysis. Step 1: Calculate the realized returns for a hypothetical portfolio invested equally in the three stocks. You may simply average the three returns.2 We will refer to this as the equally weighted portfolio. Calculate the mean (average) realized return and standard deviation of the realized returns for each stock, the S&P 500 index, and the equally weighted portfolio. op yo Compare and contrast the mean and standard deviations of these five possible investments. What are the noticeable differences? When choosing between the three individual stock investments and ignoring combinations of these investments, which would you suggest to our hypothetical investors? Why? How does your answer change if you add the index as an allowable investment? No tC Step 2: Calculate the correlation between each of the three stocks and between the S&P 500 and the equally weighted portfolio. Assume that the average return, standard deviation and correlation of each of these assets from 1990 to 2009 are a good estimate of these same measures for the future. Using the template provided in the second tab, construct a graph that shows the expected future relation between the returns (vertical axis) and standard deviations (horizontal axis) of a pair of the stock investments (your choice which pair).3 1 A portfolio can consist of a single investment and need not have more than one component. Averaging the returns implicitly assumes that each month, you are rebalancing the portfolio so that an equal value is invested in each stock. 3 The template produces the graph by first generating a set of observations and then plotting those observations. This is done as follows. A table was created that has one column with the weight assigned to one stock (using increments of 1%); a second column with the weight assigned to the second stock (one minus the weight of the first stock); a third column with the anticipated standard deviation of this two-asset portfolio based on the weights, standard deviations, and correlation. The formula for the mean would be r p w1 r1 w2 r2 where rp is the portfolio return, r1 Do 2 is the mean historic return of stock number one, r2 is the mean historic return of stock number two, and w refers to the proportional weight invested in each subscripted security. For example, if 30% of a portfolio is invested in security number one, then w1 = 0.30 and, since all weights must sum to 1, w2 would equal 0.70. For the standard deviation, the formula would be p sqrt ( w12 12 w 22 std 22 2 w1 w 2 1 2 corr1,2 ) where σ denotes the standard deviation of historic returns for the subscripted security, corr denotes the correlation between the subscripted securities, and the p subscript indicates the portfolio you are examining. The resulting expected returns are plotted against the standard deviations. This document is authorized for educator review use only by MARK STEWART, University of New South Wales until Jul 2018. Copying or posting is an infringement of copyright. Permissions@hbsp.harvard.edu or 617.783.7860 rP os t -3- UV2565 Is there an intuitive explanation for the shape of the curve you have generated? How does the shape of the curve change as you alter the correlation (which is bounded by −1 and 1, inclusive)? What do the correlations between the individual stocks indicate? What insight is provided by the correlation between the equally weighted portfolio and the S&P 500 index? op yo Step 3: Using the template provided, construct a graph that shows the expected returns and standard deviations of all possible combinations of the three stocks. This graph was constructed in a fashion analogous to the two-asset graph, but expanded to three stocks.4 This graph describes the complete investment space offered by the three stock investments. Restricting yourself to combinations of the three stocks, what portfolio of stock investments would you recommend for our two hypothetical investors? Locate the S&P 500 index on this graph. Explain the location of this index relative to the set of possible three-stock combinations. Step 4: We can expand the set of financial assets by considering a risk-free bond (U.S. government security). We will assume that the return on the bond is 0.45% a month, which is about 5.5% per year. No tC What would be the diversification benefits from adding a bond? This risk-free asset can be combined with the market portfolio to yield another set of possible investments. This line is referred to as the capital market line. Add the capital market line to your graph from Step 3. The can be done by adding points to the graph that represent linear combinations of the bond and the market. Explain the shape of the capital market line. Do Now consider all the possible investments you have identified (the three individual stocks, all combinations of the three stocks, the index, and the security market line). What would you recommend to our two hypothetical investors? Be very specific in your recommendation. 4 The formula for the mean would be rp would be p sqrt ( w12 2 1 w 22 2 2 w32 2 3 w1 r1 2 w1 w 2 w2 r2 1 w3 r3 and for the standard deviation for three stocks 2 corr1,2 2 w1 w3 1 3 corr1,3 2 w 2 w3 2 3 corr2,3 ) . Given the number of possible combinations, the graph uses increments of 5% in the weights and starts by generating all 5% incremented combinations of weights on the three stock investments. This document is authorized for educator review use only by MARK STEWART, University of New South Wales until Jul 2018. Copying or posting is an infringement of copyright. Permissions@hbsp.harvard.edu or 617.783.7860 rP os t -4- UV2565 Individual Asset Returns It should be clear from the previous steps that portfolios of stocks offer significant advantages over individual stocks. In fact, a case could be made that an extremely broad portfolio (a market index) is the optimal portfolio of risky investments, and this portfolio would be combined with an appropriate amount of riskless bonds to achieve a desired optimal overall investment portfolio. op yo The optimality of holding portfolios has important implications for individual stocks. When considering the riskiness of an individual stock, investors will ignore the total risk of the stock (since much of it will be diversified away) and consider only that level of risk that cannot be diversified away. This can be described as the risk an individual stock adds to a particular portfolio. The remaining steps develop a measure of this risk and link that measure to returns. Step 5: To measure the risk a stock adds to a given portfolio, one simply regresses the returns of the individual stock on the returns of the portfolio. The regression coefficient on the portfolio reflects exactly that risk. For example, if we regress an individual stock’s returns on a broad market index, the resulting coefficient on the market is called a market beta (or, more commonly, simply the beta). The beta reflects the variation in individual stock returns that cannot be diversified away. One simple form for the regression is the following:5 ri , t alpha beta rm , t t (1) No tC In the regression model above, returns are observed for each time period t for an individual stock i and market return m. The regression acknowledges individual error terms each period of ε since stock returns will deviate from this relation due to firm-specific events. Please calculate the alpha and beta for each of the three stocks relative to the S&P 500 index. This can be done using the regression tool from the Data Analysis Toolkit in Excel or using the following simple formulas: beta alpha corri ,m i m ri beta rm (2) (3) Do The regression analysis will provide additional statistical information on the relationship, but the above equations are sufficient. 5 Market beta regressions are often run using returns in excess of a risk-free rate and are often also adjusted for various statistical problems; however, this simple form typically provides very similar results. This document is authorized for educator review use only by MARK STEWART, University of New South Wales until Jul 2018. Copying or posting is an infringement of copyright. Permissions@hbsp.harvard.edu or 617.783.7860 rP os t -5- UV2565 Based on the betas, which firm is the most risky? Least risky? How does your answer compare with the answer you provided based on standard deviations? Which one is appropriate for our hypothetical investors? Explain why. What is the economic meaning of the alpha? op yo Step 6: Since the beta provides a measure of risk, one should be able to link expected return to this risk measure. By expected return, we mean the return that an individual investor would expect to earn from holding this stock. This can be calculated quite easily. First, one recognizes that a riskless bond has a beta of zero and that the market portfolio has a beta of one. Since all the diversification benefits associated with portfolios have already been accounted for, the graph of the relationship between beta and returns for portfolios combining the risk-free bond and the market portfolio is linear. All individual stocks must lie on this same line. Thus, the equation for returns for every security is the equation of the line that connects the market return and the bond return in a graph of returns (vertical axis) against beta (horizontal axis).6 That equation and the theories that justify it are referred to as the CAPM). The equation is ri rrf (rm rrf ) rrf ( MRP) (4) No tC where ri is the expected return for an individual stock, rrf is the expected risk-free rate of return, β is the beta, rm is the expected return on the market, and (in the simplified version) MRP is the market risk premium (the difference between the expected return on the market and the expected risk-free rate of return). Given the calculated beta for each stock, calculate the expected monthly return for each stock assuming that the monthly risk-free rate is 0.45% (about 5.5% annually) and the monthly risk premium is 0.50% (about 6% annually). Calculate the annual expected returns implied by these monthly returns. Calculate the realized annual returns from the mean returns in Step 1. How do the realized returns compare with the expected returns? Assuming the CAPM describes the appropriate expected returns for these stocks, describe how prices might respond if, at some point, the expected returns on the three stocks differed from what was predicted by the CAPM. Summary Do These steps illustrate the essential link between risk and returns as it would be viewed in a world where individuals can (and therefore do) hold portfolios of investments. We have used past data to generate a description of the world and considered our choices assuming the past behavior would indicate future (expected) behavior. There are a number of reasons one needs to be cautious 6 It is crucial to recognize that this graph is plotting returns relative to beta while the earlier graphs plot returns relative to standard deviations. This document is authorized for educator review use only by MARK STEWART, University of New South Wales until Jul 2018. Copying or posting is an infringement of copyright. Permissions@hbsp.harvard.edu or 617.783.7860 rP os t -6- UV2565 Do No tC op yo about this assumption, and in many cases the results for past data would not be a reasonable estimate for the future. Applying the ideas developed here should be based on best estimates of future expected return behavior. This document is authorized for educator review use only by MARK STEWART, University of New South Wales until Jul 2018. Copying or posting is an infringement of copyright. Permissions@hbsp.harvard.edu or 617.783.7860 This spreadsheet supports STUDENT analysis of the case “Portfolio Selection and the Capital Asset Pricing Model” (UVA-F-1604). This spreadsheet was prepared by Associate Professor Marc Lipson. Copyright © 2010 by the University of Virginia Darden School Foundation, Charlottesville, VA. All rights reserved. For customer service inquiries, send an e-mail to sales@dardenbusinesspublishing.com. No part of this publication may be reproduced, stored in a retrieval system, posted to the Internet, or transmitted in any form or by any means—electronic, mechanical, photocopying, recording, or otherwise—without the permission of the Darden School Foundation. September 29, 2010. Security Monthly Return Data Returns in Percent and for Month Indicated (not annualized) Short Name S&P Harris Urban Maya Year 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1991 1991 1991 1991 1991 1991 1991 1991 1991 1991 1991 1991 1992 1992 1992 1992 1992 1992 1992 1992 1992 1992 1992 1992 1993 1993 1993 1993 1993 Name S&P Harris Packaged Goods Urban Educational Products Maya Medical Technologies Month 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 Description S&P 500 Index Producer of packaged food products that food chains brand with their own name Small and young firm with good prospects developing educational products Medium-size biotechnology firm S&P -6,71 1,29 2,65 -2,49 9,75 -0,67 -0,32 -9,04 -4,87 -0,43 6,46 2,79 4,36 7,15 2,42 0,24 4,31 -4,58 4,66 2,37 -1,67 1,34 -4,03 11,44 -1,86 1,30 -1,94 2,94 0,49 -1,49 4,09 -2,05 1,18 0,35 3,40 1,23 0,84 1,36 2,11 -2,42 2,68 Harris -6,54 0,63 -0,51 -4,22 1,53 2,49 0,32 -9,39 -0,10 5,56 2,94 -0,98 -1,89 5,72 2,09 1,62 -1,03 -1,40 4,31 3,61 1,56 2,76 2,20 8,20 -5,57 -2,88 -0,50 3,97 0,60 0,69 8,92 -4,85 1,44 -1,62 -2,48 6,33 2,16 6,84 3,41 0,58 -5,55 Urban -0,31 8,21 12,23 -2,89 18,54 6,38 -1,38 -16,12 -13,83 7,41 -0,66 2,44 8,72 -1,87 -2,69 -2,76 7,28 -6,49 1,27 7,72 1,91 -3,06 -9,74 7,81 6,44 -9,19 -4,72 0,18 0,18 -9,22 0,21 -6,35 -1,44 -2,14 -1,84 14,13 -12,25 -1,87 1,72 8,47 4,83 Maya -9,68 -9,99 3,90 -5,78 18,37 -3,42 3,42 -26,63 -12,04 0,96 18,75 3,51 5,03 0,31 5,24 4,15 -0,47 -20,10 0,37 6,88 -0,88 -0,54 -7,18 10,47 -15,68 25,54 -2,47 -5,98 -1,89 -10,46 0,92 -5,15 15,96 -2,40 13,11 -0,43 -11,44 -4,84 18,41 -0,10 4,12 1993 1993 1993 1993 1993 1993 1993 1994 1994 1994 1994 1994 1994 1994 1994 1994 1994 1994 1994 1995 1995 1995 1995 1995 1995 1995 1995 1995 1995 1995 1995 1996 1996 1996 1996 1996 1996 1996 1996 1996 1996 1996 1996 1997 1997 1997 1997 1997 1997 1997 1997 1997 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 0,29 -0,40 3,79 -0,77 2,07 -0,95 1,21 3,40 -2,71 -4,36 1,28 1,64 -2,45 3,28 4,10 -2,45 2,25 -3,64 1,48 2,59 3,90 2,95 2,94 4,00 2,32 3,32 0,25 4,22 -0,36 4,39 1,93 3,40 0,93 0,96 1,47 2,58 0,38 -4,42 2,11 5,63 2,76 7,56 -1,98 6,25 0,78 -4,11 5,97 6,09 4,48 7,96 -5,60 5,48 9,32 1,56 2,44 -0,75 -0,10 -4,71 2,67 -2,79 -6,74 -7,27 5,59 -9,41 -2,26 7,86 5,15 -0,50 1,89 4,90 -0,48 6,36 -1,60 -6,37 3,05 6,31 2,45 -1,88 0,55 6,49 4,71 0,49 7,18 9,16 -1,85 -2,72 -2,79 0,15 6,13 -2,74 1,35 -2,21 2,36 1,04 -1,00 0,51 2,26 -1,30 -1,92 1,69 3,13 6,61 -1,13 4,05 -6,72 6,32 1,17 -3,25 -2,38 3,57 11,87 -0,10 8,57 -4,91 1,02 3,51 -0,37 -3,61 2,42 -5,05 1,35 2,75 4,63 -5,42 4,12 16,43 2,23 7,40 6,27 6,88 -4,20 6,54 -4,13 11,54 7,45 -1,22 4,90 6,68 -5,29 4,04 2,10 1,48 2,48 4,32 0,83 4,39 7,07 0,49 -4,86 -3,17 -0,10 7,03 0,61 10,50 -7,00 -0,21 -2,45 -4,68 5,58 22,71 10,37 11,52 8,72 -3,64 -13,19 -12,39 -8,72 12,73 -7,39 8,23 7,59 7,10 2,81 3,57 9,28 -11,60 1,03 7,01 3,56 -5,65 11,24 14,36 4,53 -2,03 -18,83 -3,64 -12,55 -7,93 14,28 6,07 12,06 3,99 -12,00 -10,92 4,34 -8,15 -6,91 12,19 4,51 2,75 11,22 -0,20 4,63 2,76 3,97 6,04 11,57 1,52 1997 1997 1997 1998 1998 1998 1998 1998 1998 1998 1998 1998 1998 1998 1998 1999 1999 1999 1999 1999 1999 1999 1999 1999 1999 1999 1999 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2002 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 1 -3,34 4,63 1,72 1,11 7,21 5,12 1,01 -1,72 4,06 -1,06 -14,46 6,41 8,13 6,06 5,76 4,18 -3,11 4,00 3,87 -2,36 5,55 -3,12 -0,49 -2,74 6,33 2,03 5,89 -5,02 -1,89 9,78 -3,01 -2,05 2,47 -1,56 6,21 -5,28 -0,42 -7,88 0,49 3,55 -9,12 -6,34 7,77 0,67 -2,43 -0,98 -6,26 -8,08 1,91 7,67 0,88 -1,46 3,75 6,07 4,06 -4,58 -1,55 4,59 -5,08 -3,82 -0,10 -5,47 6,68 7,77 0,16 -4,11 1,38 -7,01 -3,72 -4,75 4,31 6,02 -13,50 -5,92 4,25 -6,13 1,00 -7,42 2,29 4,18 -14,35 5,90 22,75 -1,36 -16,80 10,66 8,77 11,11 6,14 12,19 0,99 -7,09 11,21 -1,24 4,88 2,86 -8,13 -2,63 2,94 -5,65 -3,18 -0,22 5,43 -4,21 -11,93 10,87 -7,98 -2,78 14,10 -4,02 -4,06 -4,44 -6,77 -13,00 -20,03 10,81 9,37 8,42 -19,79 6,22 3,00 -4,66 19,39 3,78 4,51 3,03 0,07 -6,03 7,97 -11,60 1,90 7,29 -16,78 2,27 4,86 -1,32 6,94 16,64 10,04 17,62 7,33 1,95 -4,54 -11,46 6,52 -10,53 10,83 1,94 -11,69 5,17 -12,33 -34,67 -2,79 8,09 10,38 5,50 2,13 25,35 -10,45 0,38 14,74 5,74 5,75 -11,16 20,04 6,97 -4,06 -1,87 -7,46 -9,18 -8,48 31,01 2,91 14,80 13,90 13,30 18,51 4,89 -8,02 9,40 21,79 21,53 -35,84 -0,74 -22,35 33,60 12,22 -25,32 11,17 18,90 4,61 9,47 -7,84 -21,48 -8,65 28,46 -22,34 -14,25 -16,62 -11,20 12,11 -7,54 -17,21 3,77 2,95 15,79 3,84 4,62 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2004 2004 2004 2004 2004 2004 2004 2004 2004 2004 2004 2004 2005 2005 2005 2005 2005 2005 2005 2005 2005 2005 2005 2005 2006 2006 2006 2006 2006 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 -1,93 3,76 -6,06 -0,74 -7,12 -7,80 0,66 -10,87 8,80 5,89 -5,87 -2,62 -1,50 0,97 8,24 5,27 1,28 1,76 1,95 -1,06 5,66 0,88 5,24 1,84 1,39 -1,51 -1,57 1,37 1,94 -3,31 0,40 1,08 1,53 4,05 3,40 -2,44 2,10 -1,77 -1,90 3,18 0,14 3,72 -0,91 0,81 -1,67 3,78 0,03 2,65 0,27 1,24 1,34 -2,88 6,39 5,01 -0,73 -5,49 -6,44 -17,87 5,34 -16,49 -10,17 13,08 -3,94 -13,67 -5,35 4,81 15,35 11,31 2,62 -6,03 2,04 5,87 -6,13 -0,63 10,08 6,91 6,64 -4,68 -7,63 5,42 0,62 -2,88 6,23 -2,45 2,94 4,73 0,40 2,55 -4,36 1,88 3,31 2,23 3,21 4,86 -3,12 6,68 -4,48 -2,87 1,41 0,52 -1,31 -6,89 -1,75 3,43 12,55 4,88 -7,66 -4,09 5,41 -7,83 -10,41 -8,03 -12,93 14,76 -3,07 -4,34 -12,32 -9,17 8,76 12,95 11,80 -3,60 13,31 -8,28 12,02 0,08 9,67 -1,03 4,19 -5,40 3,84 7,65 11,45 -0,77 3,19 -1,25 -3,43 7,66 -3,46 -2,36 9,03 6,25 1,71 7,68 3,19 -0,08 1,81 1,29 -4,97 5,78 2,91 -2,85 6,75 7,11 6,98 0,02 -13,04 9,38 3,76 9,64 -12,31 -14,94 -14,98 -8,04 4,09 14,59 -21,19 6,36 -1,65 13,39 6,27 1,54 9,07 0,89 14,31 -6,65 5,46 3,77 -0,81 6,09 5,98 -4,15 -7,34 -1,30 -5,89 -2,48 -3,71 6,21 4,40 6,21 4,05 0,63 -10,85 -17,22 1,82 0,66 -8,01 1,19 6,67 -1,14 -10,99 4,24 -7,90 5,46 -12,04 -1,74 -11,70 -1,16 2006 2006 2006 2006 2006 2006 2006 2007 2007 2007 2007 2007 2007 2007 2007 2007 2007 2007 2007 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2009 2009 2009 2009 2009 2009 2009 2009 2009 2009 2009 2009 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 0,14 0,62 2,38 2,58 3,26 1,90 1,40 1,51 -1,96 1,12 4,43 3,49 -1,66 -3,10 1,50 3,74 1,59 -4,18 -0,69 -6,00 -3,25 -0,43 4,87 1,30 -8,43 -0,84 1,45 -8,91 -16,79 -7,18 1,06 -8,43 -10,65 8,76 9,57 5,59 0,20 7,56 3,61 3,73 -1,86 6,00 1,93 -0,16 5,36 1,92 -0,40 13,81 1,03 2,48 2,13 3,94 8,47 2,92 -4,48 -5,54 -3,54 3,07 3,50 4,52 -0,37 -2,43 -8,33 -3,38 1,64 7,11 -4,33 -5,06 -1,91 -0,23 -5,25 -11,98 -2,95 6,26 -5,90 -9,32 -10,05 4,33 1,30 9,58 7,07 2,74 -1,50 -2,58 7,78 7,98 -1,71 -5,58 -2,97 5,17 1,18 11,13 0,25 0,71 -2,28 1,79 4,50 8,44 -4,50 7,46 -6,27 8,47 -6,20 -5,88 -5,59 -4,99 -0,09 -10,27 14,01 -2,09 -20,70 -7,11 7,84 -12,62 -8,70 -18,01 -0,01 -0,94 -24,80 13,07 12,46 12,93 -5,34 0,86 16,63 8,92 -11,83 10,42 3,18 -16,87 15,40 11,59 6,77 -7,66 -0,44 -4,38 31,60 12,89 8,15 7,45 17,34 -3,03 -24,27 -5,51 -13,18 -0,29 -9,17 -8,96 2,81 0,48 -6,98 -14,56 5,30 -16,35 35,84 13,87 -9,20 -26,84 -20,32 21,12 -4,12 -36,14 16,82 64,19 -4,65 3,77 11,00 -2,55 9,42 1,83 13,04 3,29 Portfolio Characteristics Plug in variables for two stocks below: Stock 1 0,58 5,78 Mean Standard Deviation Correlation of 1 with 2 Stock 2 0,83 8,22 1,50000 (0,50) 1,25000 WeightStandard Dev 0,00 8,22 0,01 8,11 0,02 8,00 0,03 7,89 0,04 7,78 0,05 7,67 0,06 7,56 0,07 7,45 0,08 7,34 0,09 7,23 0,10 7,13 0,11 7,02 0,12 6,91 0,13 6,81 0,14 6,70 0,15 6,60 0,16 6,49 0,17 6,39 0,18 6,29 0,19 6,18 0,20 6,08 0,21 5,98 0,22 5,88 0,23 5,78 0,24 5,68 0,25 5,58 0,26 5,49 0,27 5,39 0,28 5,30 0,29 5,20 0,30 5,11 0,31 5,02 0,32 4,93 0,33 4,84 0,34 4,76 0,35 4,67 Return 0,82530 0,82288 0,82045 0,81803 0,81560 0,81318 0,81076 0,80833 0,80591 0,80348 0,80106 0,79864 0,79621 0,79379 0,79136 0,78894 0,78652 0,78409 0,78167 0,77924 0,77682 0,77440 0,77197 0,76955 0,76712 0,76470 0,76228 0,75985 0,75743 0,75500 0,75258 0,75016 0,74773 0,74531 0,74288 0,74046 Return Portfolio Expectations Standard Deviation and Returns 1,00000 0,75000 0,50000 0,25000 Source: Created by case writer 0,36 0,37 0,38 0,39 0,40 0,41 0,42 0,43 0,44 0,45 0,46 0,47 0,48 0,49 0,50 0,51 0,52 0,53 0,54 0,55 0,56 0,57 0,58 0,59 0,60 0,61 0,62 0,63 0,64 0,65 0,66 0,67 0,68 0,69 0,70 0,71 0,72 0,73 0,74 0,75 0,76 0,77 0,78 0,79 0,80 0,81 0,82 0,83 0,84 0,85 0,86 0,87 4,59 4,51 4,43 4,35 4,27 4,20 4,13 4,06 3,99 3,93 3,87 3,81 3,76 3,70 3,66 3,61 3,57 3,53 3,50 3,47 3,44 3,42 3,40 3,39 3,38 3,38 3,38 3,38 3,39 3,40 3,42 3,44 3,47 3,50 3,53 3,57 3,61 3,66 3,70 3,76 3,81 3,87 3,93 3,99 4,06 4,13 4,20 4,27 4,35 4,43 4,51 4,59 0,73804 0,73561 0,73319 0,73076 0,72834 0,72592 0,72349 0,72107 0,71864 0,71622 0,71380 0,71137 0,70895 0,70652 0,70410 0,70168 0,69925 0,69683 0,69440 0,69198 0,68956 0,68713 0,68471 0,68228 0,67986 0,67744 0,67501 0,67259 0,67016 0,66774 0,66532 0,66289 0,66047 0,65804 0,65562 0,65320 0,65077 0,64835 0,64592 0,64350 0,64108 0,63865 0,63623 0,63380 0,63138 0,62896 0,62653 0,62411 0,62168 0,61926 0,61684 0,61441 0,88 0,89 0,90 0,91 0,92 0,93 0,94 0,95 0,96 0,97 0,98 0,99 1,00 4,67 4,76 4,84 4,93 5,02 5,11 5,20 5,30 5,39 5,49 5,58 5,68 5,78 0,61199 0,60956 0,60714 0,60472 0,60229 0,59987 0,59744 0,59502 0,59260 0,59017 0,58775 0,58532 0,58290 Portfolios with Two Assets 1,50000 1,25000 1,00000 0,75000 0,50000 0,25000 - 2,50 5,00 7,50 10,00 Standard Deviation 12,50 15,00 Portfolio Characteristics Plug in variables for three stocks below: Mean Standard Deviation Correlation of 1 with 2 Correlation of 1 with 3 Correlation of 2 with 3 Stock 1 0,58 5,80 Stock 2 0,82 8,20 Stock 3 1,10 12,60 0,3000 0,0800 0,2300 Portfolio Expectations: Weights A B 0,00 0,05 0,10 0,15 0,20 0,25 0,30 0,35 0,40 0,45 0,50 0,55 0,60 0,65 0,70 0,75 0,80 0,85 0,90 0,95 0,00 0,05 0,10 0,15 0,20 0,25 0,30 0,35 0,40 0,45 0,50 0,55 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 Standard C Deviation 1,00 0,95 0,90 0,85 0,80 0,75 0,70 0,65 0,60 0,55 0,50 0,45 0,40 0,35 0,30 0,25 0,20 0,15 0,10 0,05 0,95 0,90 0,85 0,80 0,75 0,70 0,65 0,60 0,55 0,50 0,45 0,40 12,6000 11,9967 11,4011 10,8144 10,2383 9,6746 9,1255 8,5940 8,0835 7,5981 7,1431 6,7245 6,3497 6,0267 5,7643 5,5711 5,4544 5,4192 5,4670 5,5957 12,0709 11,4710 10,8796 10,2980 9,7282 9,1722 8,6328 8,1132 7,6174 7,1506 6,7187 6,3288 Mean 1,1000 1,0740 1,0480 1,0220 0,9960 0,9700 0,9440 0,9180 0,8920 0,8660 0,8400 0,8140 0,7880 0,7620 0,7360 0,7100 0,6840 0,6580 0,6320 0,6060 1,0860 1,0600 1,0340 1,0080 0,9820 0,9560 0,9300 0,9040 0,8780 0,8520 0,8260 0,8000 0,60 0,65 0,70 0,75 0,80 0,85 0,90 0,95 0,00 0,05 0,10 0,15 0,20 0,25 0,30 0,35 0,40 0,45 0,50 0,55 0,60 0,65 0,70 0,75 0,80 0,85 0,90 0,00 0,05 0,10 0,15 0,20 0,25 0,30 0,35 0,40 0,45 0,50 0,55 0,60 0,65 0,70 0,75 0,80 0,85 0,00 0,05 0,10 0,15 0,20 0,25 0,30 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,10 0,10 0,10 0,10 0,10 0,10 0,10 0,10 0,10 0,10 0,10 0,10 0,10 0,10 0,10 0,10 0,10 0,10 0,10 0,15 0,15 0,15 0,15 0,15 0,15 0,15 0,15 0,15 0,15 0,15 0,15 0,15 0,15 0,15 0,15 0,15 0,15 0,20 0,20 0,20 0,20 0,20 0,20 0,20 0,35 0,30 0,25 0,20 0,15 0,10 0,05 0,00 0,90 0,85 0,80 0,75 0,70 0,65 0,60 0,55 0,50 0,45 0,40 0,35 0,30 0,25 0,20 0,15 0,10 0,05 0,00 0,85 0,80 0,75 0,70 0,65 0,60 0,55 0,50 0,45 0,40 0,35 0,30 0,25 0,20 0,15 0,10 0,05 0,00 0,80 0,75 0,70 0,65 0,60 0,55 0,50 5,9891 5,7087 5,4967 5,3610 5,3076 5,3390 5,4537 5,6466 11,5562 10,9608 10,3749 9,8000 9,2382 8,6922 8,1649 7,6604 7,1834 6,7397 6,3364 5,9817 5,6845 5,4544 5,3001 5,2283 5,2424 5,3418 5,5217 11,0579 10,4684 9,8896 9,3232 8,7718 8,2384 7,7266 7,2410 6,7874 6,3725 6,0044 5,6921 5,4452 5,2730 5,1829 5,1791 5,2619 5,4274 10,5783 9,9965 9,4266 8,8711 8,3329 7,8153 7,3230 0,7740 0,7480 0,7220 0,6960 0,6700 0,6440 0,6180 0,5920 1,0720 1,0460 1,0200 0,9940 0,9680 0,9420 0,9160 0,8900 0,8640 0,8380 0,8120 0,7860 0,7600 0,7340 0,7080 0,6820 0,6560 0,6300 0,6040 1,0580 1,0320 1,0060 0,9800 0,9540 0,9280 0,9020 0,8760 0,8500 0,8240 0,7980 0,7720 0,7460 0,7200 0,6940 0,6680 0,6420 0,6160 1,0440 1,0180 0,9920 0,9660 0,9400 0,9140 0,8880 0,35 0,40 0,45 0,50 0,55 0,60 0,65 0,70 0,75 0,80 0,00 0,05 0,10 0,15 0,20 0,25 0,30 0,35 0,40 0,45 0,50 0,55 0,60 0,65 0,70 0,75 0,00 0,05 0,10 0,15 0,20 0,25 0,30 0,35 0,40 0,45 0,50 0,55 0,60 0,65 0,70 0,00 0,05 0,10 0,15 0,20 0,25 0,30 0,35 0,40 0,45 0,50 0,20 0,20 0,20 0,20 0,20 0,20 0,20 0,20 0,20 0,20 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,30 0,30 0,30 0,30 0,30 0,30 0,30 0,30 0,30 0,30 0,30 0,30 0,30 0,30 0,30 0,35 0,35 0,35 0,35 0,35 0,35 0,35 0,35 0,35 0,35 0,35 0,45 0,40 0,35 0,30 0,25 0,20 0,15 0,10 0,05 0,00 0,75 0,70 0,65 0,60 0,55 0,50 0,45 0,40 0,35 0,30 0,25 0,20 0,15 0,10 0,05 0,00 0,70 0,65 0,60 0,55 0,50 0,45 0,40 0,35 0,30 0,25 0,20 0,15 0,10 0,05 0,00 0,65 0,60 0,55 0,50 0,45 0,40 0,35 0,30 0,25 0,20 0,15 6,8612 6,4366 6,0569 5,7312 5,4691 5,2801 5,1721 5,1502 5,2157 5,3652 10,1201 9,5479 8,9895 8,4478 7,9260 7,4284 6,9602 6,5278 6,1386 5,8014 5,5258 5,3212 5,1962 5,1564 5,2039 5,3362 9,6863 9,1262 8,5822 8,0576 7,5563 7,0834 6,6450 6,2482 5,9015 5,6141 5,3957 5,2547 5,1974 5,2267 5,3411 9,2804 8,7353 8,2091 7,7056 7,2296 6,7868 6,3843 6,0299 5,7328 5,5021 5,3465 0,8620 0,8360 0,8100 0,7840 0,7580 0,7320 0,7060 0,6800 0,6540 0,6280 1,0300 1,0040 0,9780 0,9520 0,9260 0,9000 0,8740 0,8480 0,8220 0,7960 0,7700 0,7440 0,7180 0,6920 0,6660 0,6400 1,0160 0,9900 0,9640 0,9380 0,9120 0,8860 0,8600 0,8340 0,8080 0,7820 0,7560 0,7300 0,7040 0,6780 0,6520 1,0020 0,9760 0,9500 0,9240 0,8980 0,8720 0,8460 0,8200 0,7940 0,7680 0,7420 0,55 0,60 0,65 0,00 0,05 0,10 0,15 0,20 0,25 0,30 0,35 0,40 0,45 0,50 0,55 0,60 0,00 0,05 0,10 0,15 0,20 0,25 0,30 0,35 0,40 0,45 0,50 0,55 0,00 0,05 0,10 0,15 0,20 0,25 0,30 0,35 0,40 0,45 0,50 0,00 0,05 0,10 0,15 0,20 0,25 0,30 0,35 0,40 0,45 0,00 0,05 0,10 0,35 0,35 0,35 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,45 0,45 0,45 0,45 0,45 0,45 0,45 0,45 0,45 0,45 0,45 0,45 0,50 0,50 0,50 0,50 0,50 0,50 0,50 0,50 0,50 0,50 0,50 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,60 0,60 0,60 0,10 0,05 0,00 0,60 0,55 0,50 0,45 0,40 0,35 0,30 0,25 0,20 0,15 0,10 0,05 0,00 0,55 0,50 0,45 0,40 0,35 0,30 0,25 0,20 0,15 0,10 0,05 0,00 0,50 0,45 0,40 0,35 0,30 0,25 0,20 0,15 0,10 0,05 0,00 0,45 0,40 0,35 0,30 0,25 0,20 0,15 0,10 0,05 0,00 0,40 0,35 0,30 5,2726 5,2839 5,3798 8,9061 8,3795 7,8750 7,3973 6,9519 6,5452 6,1850 5,8799 5,6387 5,4699 5,3804 5,3741 5,4514 8,5676 8,0634 7,5852 7,1384 6,7292 6,3648 6,0533 5,8033 5,6229 5,5190 5,4959 5,5547 8,2693 7,7919 7,3449 6,9344 6,5672 6,2509 5,9936 5,8030 5,6861 5,6472 5,6881 8,0157 7,5697 7,1591 6,7903 6,4705 6,2072 6,0079 5,8792 5,8256 5,8493 7,8112 7,4014 7,0320 0,7160 0,6900 0,6640 0,9880 0,9620 0,9360 0,9100 0,8840 0,8580 0,8320 0,8060 0,7800 0,7540 0,7280 0,7020 0,6760 0,9740 0,9480 0,9220 0,8960 0,8700 0,8440 0,8180 0,7920 0,7660 0,7400 0,7140 0,6880 0,9600 0,9340 0,9080 0,8820 0,8560 0,8300 0,8040 0,7780 0,7520 0,7260 0,7000 0,9460 0,9200 0,8940 0,8680 0,8420 0,8160 0,7900 0,7640 0,7380 0,7120 0,9320 0,9060 0,8800 0,15 0,20 0,25 0,30 0,35 0,40 0,45 0,00 0,05 0,10 0,15 0,20 0,25 0,30 0,35 0,00 0,05 0,10 0,15 0,20 0,25 0,30 0,00 0,05 0,10 0,15 0,20 0,25 0,00 0,05 0,10 0,15 0,20 0,00 0,05 0,10 0,15 0,00 0,05 0,00 0,05 0,00 0,60 0,60 0,60 0,60 0,60 0,60 0,60 0,65 0,65 0,65 0,65 0,65 0,65 0,65 0,65 0,70 0,70 0,70 0,70 0,70 0,70 0,70 0,75 0,75 0,75 0,75 0,75 0,75 0,80 0,80 0,80 0,80 0,80 0,85 0,85 0,85 0,85 0,90 0,90 0,95 0,95 1,00 0,25 0,20 0,15 0,10 0,05 0,00 -0,05 0,35 0,30 0,25 0,20 0,15 0,10 0,05 0,00 0,30 0,25 0,20 0,15 0,10 0,05 0,00 0,25 0,20 0,15 0,10 0,05 0,00 0,20 0,15 0,10 0,05 0,00 0,15 0,10 0,05 0,00 0,10 0,05 0,05 0,00 0,00 6,7098 6,4419 6,2352 6,0959 6,0289 6,0363 6,1181 7,6596 7,2905 6,9669 6,6954 6,4824 6,3339 6,2544 6,2467 7,5642 7,2399 6,9656 6,7473 6,5906 6,5000 6,4783 7,5270 7,2507 7,0280 6,8642 6,7635 6,7287 7,5491 7,3227 7,1526 7,0428 6,9961 7,6297 7,4541 7,3361 7,2785 7,7672 7,6418 7,9586 7,8819 8,2000 0,8540 0,8280 0,8020 0,7760 0,7500 0,7240 0,6980 0,9180 0,8920 0,8660 0,8400 0,8140 0,7880 0,7620 0,7360 0,9040 0,8780 0,8520 0,8260 0,8000 0,7740 0,7480 0,8900 0,8640 0,8380 0,8120 0,7860 0,7600 0,8760 0,8500 0,8240 0,7980 0,7720 0,8620 0,8360 0,8100 0,7840 0,8480 0,8220 0,8340 0,8080 0,8200 Portfolios with Three Assets 1,5000 1,2500 Monthly Return 1,0000 0,7500 0,5000 0,2500 - 2,5000 5,0000 7,5000 10,0000 Standard Deviation Source: Created by case writer. 12,5000 15,0000 S&P Harris -6,71 1,29 2,65 -2,49 9,75 -0,67 -0,32 -9,04 -4,87 -0,43 6,46 2,79 4,36 7,15 2,42 0,24 4,31 -4,58 4,66 2,37 -1,67 1,34 -4,03 11,44 -1,86 1,30 -1,94 2,94 0,49 -1,49 4,09 -2,05 1,18 0,35 3,40 1,23 0,84 1,36 2,11 -2,42 2,68 0,29 -0,40 3,79 -0,77 2,07 -0,95 1,21 3,40 -2,71 -6,54 0,63 -0,51 -4,22 1,53 2,49 0,32 -9,39 -0,10 5,56 2,94 -0,98 -1,89 5,72 2,09 1,62 -1,03 -1,40 4,31 3,61 1,56 2,76 2,20 8,20 -5,57 -2,88 -0,50 3,97 0,60 0,69 8,92 -4,85 1,44 -1,62 -2,48 6,33 2,16 6,84 3,41 0,58 -5,55 9,32 1,56 2,44 -0,75 -0,10 -4,71 2,67 -2,79 -6,74 -4,36 1,28 1,64 -2,45 3,28 4,10 -2,45 2,25 -3,64 1,48 2,59 3,90 2,95 2,94 4,00 2,32 3,32 0,25 4,22 -0,36 4,39 1,93 3,40 0,93 0,96 1,47 2,58 0,38 -4,42 2,11 5,63 2,76 7,56 -1,98 6,25 0,78 -4,11 5,97 6,09 4,48 7,96 -5,60 5,48 -3,34 4,63 1,72 1,11 7,21 5,12 1,01 -1,72 4,06 -1,06 -14,46 6,41 -7,27 5,59 -9,41 -2,26 7,86 5,15 -0,50 1,89 4,90 -0,48 6,36 -1,60 -6,37 3,05 6,31 2,45 -1,88 0,55 6,49 4,71 0,49 7,18 9,16 -1,85 -2,72 -2,79 0,15 6,13 -2,74 1,35 -2,21 2,36 1,04 -1,00 0,51 2,26 -1,30 -1,92 1,69 3,13 6,61 -1,13 4,05 3,75 6,07 4,06 -4,58 -1,55 4,59 -5,08 -3,82 -0,10 -5,47 6,68 7,77 8,13 6,06 5,76 4,18 -3,11 4,00 3,87 -2,36 5,55 -3,12 -0,49 -2,74 6,33 2,03 5,89 -5,02 -1,89 9,78 -3,01 -2,05 2,47 -1,56 6,21 -5,28 -0,42 -7,88 0,49 3,55 -9,12 -6,34 7,77 0,67 -2,43 -0,98 -6,26 -8,08 1,91 7,67 0,88 -1,46 -1,93 3,76 -6,06 -0,74 -7,12 -7,80 0,66 -10,87 8,80 5,89 -5,87 -2,62 -1,50 0,97 8,24 0,16 -4,11 1,38 -7,01 -3,72 -4,75 4,31 6,02 -13,50 -5,92 4,25 -6,13 1,00 -7,42 2,29 4,18 -14,35 5,90 22,75 -1,36 -16,80 10,66 8,77 11,11 6,14 12,19 0,99 -7,09 11,21 -1,24 4,88 2,86 -8,13 -2,63 2,94 -5,65 -3,18 -0,22 5,43 -4,21 6,39 5,01 -0,73 -5,49 -6,44 -17,87 5,34 -16,49 -10,17 13,08 -3,94 -13,67 -5,35 4,81 15,35 5,27 1,28 1,76 1,95 -1,06 5,66 0,88 5,24 1,84 1,39 -1,51 -1,57 1,37 1,94 -3,31 0,40 1,08 1,53 4,05 3,40 -2,44 2,10 -1,77 -1,90 3,18 0,14 3,72 -0,91 0,81 -1,67 3,78 0,03 2,65 0,27 1,24 1,34 -2,88 0,14 0,62 2,38 2,58 3,26 1,90 1,40 1,51 -1,96 1,12 4,43 3,49 -1,66 -3,10 1,50 3,74 1,59 -4,18 11,31 2,62 -6,03 2,04 5,87 -6,13 -0,63 10,08 6,91 6,64 -4,68 -7,63 5,42 0,62 -2,88 6,23 -2,45 2,94 4,73 0,40 2,55 -4,36 1,88 3,31 2,23 3,21 4,86 -3,12 6,68 -4,48 -2,87 1,41 0,52 -1,31 -6,89 -1,75 3,43 -0,16 5,36 1,92 -0,40 13,81 1,03 2,48 2,13 3,94 8,47 2,92 -4,48 -5,54 -3,54 3,07 3,50 4,52 -0,37 -0,69 -6,00 -3,25 -0,43 4,87 1,30 -8,43 -0,84 1,45 -8,91 -16,79 -7,18 1,06 -8,43 -10,65 8,76 9,57 5,59 0,20 7,56 3,61 3,73 -1,86 6,00 1,93 -2,43 -8,33 -3,38 1,64 7,11 -4,33 -5,06 -1,91 -0,23 -5,25 -11,98 -2,95 6,26 -5,90 -9,32 -10,05 4,33 1,30 9,58 7,07 2,74 -1,50 -2,58 7,78 7,98
Purchase answer to see full attachment
User generated content is uploaded by users for the purposes of learning and should be used following Studypool's honor code & terms of service.

Explanation & Answer

Attached.

Outline
Introduction
Body
Conclusion
Reference


Course title
Student name
Institution affiliation

2
Part 1
A.
Monthly
mean
STD

S&P
0.75

Harris
0.58

Urban
0.83

Maya
1.08

EWP
0.83

4.3376

5.7985

8.2441

12.5992

6.2237

B. The mean and standard deviations of these five possible investments are all different.
Harris has the least mean, followed by S&P, and Maya has the highest mean. Urban and
EWP have the same means but different standard deviations, an indication that even
though they can be closely related to each other, the expected returns of the two stocks
are not the same. The standard deviations uniformly increase from S&P to Maya but the
trend is not shown in the standard deviation of EWP.
Given the two hypothetical investors, it is more likely that the 28-year-old manager will go
for an investment with the capability of producing maximum returns and the 60-year-old
retiree will go for a less risky investment. According to the statistics provided about the three
stocks, it is evident that Maya will provide maximum returns and at the same time, has
maximum risks associated. Harris on the other hand has the least expected returns. The 28year-old therefore should invest in Maya and the 60-year-old is should invest in Harris.
In cases where the S&P index is added as an allowable index, the 60-year-old retiree will highly
consider investing in the index because it has higher returns and lower risks compared to Harris.

3
Part 2
A.

Correlation
S&P and EWP 0.6128007
Harris and Urban 0.3038045
Harris and Maya 0.0801165
Urban and Maya 0.2288145
B. Graph
Portfolios with Two Assets
1.50000

Return

1.25000

1.00000

0.75000

0.50000

0.25000

-

2.50

5.00

7.50

10.00

12.50

15.00

Standard Deviation

C. Based on the shape of the graph, it is likely that there is another factor involved in the
increase and decrease of both the risks and the returns between the two stocks. The
first part of the curve shows an increase in returns and a decrease in risks which is not
quite common unless other factors are involved. The last part of the curve however
shows a positive correlation between the two stocks where an increase in returns
causes an increase in risks.

4
The correlation between the two stocks indicates that they are positively related to
one another, the two stocks have a weak positive correlation. An increase in the first
stock causes a slight increase in the second stock and vice versa.
The equally weighted portfolio and S&P index have a strongly positive correlation, this
indicates that as S&P index increases, equally weighted portfolio increases as well and an
increase in equally weighted portfolio causes an increase in S&P.

Part 3
A. Graph
Portfolios with Three Assets
1.5
1.25

Monthly Return

1
0.75
0.5
0.25
0
0

2.5

5

7.5
10
Standard Deviation

12.5

15

B. Based on the combination of the three stocks, both the investors can comfortably invest
in both the stocks at the same time while maximizing their returns. The 60-year-old
retiree should invest at point (5.5711,0.7100) because at this point the risks involved are
lower compared to the other points of combination. The 28-year-old manager should

5
however invest at a point where he experiences maximum returns even when the risks are
higher; that point is (9.7282,0.9200).
Part 4
A. Graph
Portfolios with Three Assets
1.5

1.25

Monthly Return

1

0.75

0.5

0.25

0
0

2.5

5

7.5

10

12.5

15

Standard Deviation

B. The three investment options; the three individual stocks, all combinations of the three
stocks and the capital market line, have different levels of returns and risks. This makes it
critical for every investor to carefully study the risks and the returns involved before
investing in any of the stocks. Based on the statistical data provided on the three
investment option, the 60-year-old retiree should invest in a less risky stock that provides
an assurance of returns. In this case, the investment option with less risks and higher
returns is the option with the free risk asset, the capital market line. However, the best

6
investment option for the 28 year old manager should have higher returns and
equivalently higher risks and given the data, the investment option that matches these
conditions is a combination of the three stocks.
Part 5
B. High beta stocks are riskier but they provide a potential for higher returns while low
beta stocks pose less risks and provide lower returns. Based on the beta, Urban is more
risky compared to Maya and Harris. This is because Urban has higher beta values of
0.0797 and is proven by the above statement; higher beta stocks attract more risks. On the
other hand, Harris has lower risk as compared to the other stocks. This is because it has
lower beta values of 0.0002. The lower the beta value the lower the risks acquired.
Compared to the values gotten from the standard deviation, Maya had the highest risks
while Harris had the lowest risks. Therefore, the 60 year old retiree was bound to invest
in Harris while the Manager invests in Maya. In the case of beta however, the sixty year
old retiree would invest in Harris while the manager invests in Urban. Reason being that
Harris has lower risk and lower returns while Urban has higher risks and higher returns.
Part 6
A. Returns for the three stocks
Expected return for Harris = rrf +β (MRP)
=0.45+ 0.0002 (0.50)
= 0.4501
Expected return for Maya = rrf +β (MRP)
= 0.45+ 0.0072 (0.50)
= 0.4536

7
Expected return for Urban = rrf +β (MRP)
= 0.45 +0.0797 (0.50)
= 0.48985
B. The expected returns predict the future returns by providing values that are linked to
the investments and point out risks that may be involved in an investment. By
providing the risk rate, one may be able to calculate the possible future returns
attracted by an investment. The values of the future returns calculated from the
expected returns are very close and, therefore, do not provide a lot of errors.


This spreadsheet supports STUDENT analysis of the case “Portfolio Selection and the Capital Asset Pricing Model” (UVA-F-1604).

This spreadsheet was prepared by Associate Professor Marc Lipson. Copyright © 2010 by the University of Virginia Darden School Foundation, Charlottesville, VA. All rights reserved. For
customer service inquiries, send an e-mail to sales@dardenbusinesspublishing.com. No part of this publication may be reproduced, stored in a retrieval system, posted to the Internet, or
transmitted in any form or by any means—electronic, mechanical, photocopying, recording, or otherwise—without the permission of the Darden School Foundation. September 29, 2010.

Security Monthly Return Data
Returns in Percent and for Month Indicated (not annualized)
Short Name
S&P
Harris
Urban
Maya
Year
1990
1990
1990
1990
1990
1990
1990
1990
1990
1990
1990
1990
1991
1991
1991
1991
1991
1991
1991
1991
1991
1991
1991
1991
1992
1992
1992
1992
1992
1992
1992
1992
1992
1992
1992
1992
1993
1993
1993
1993
1993

Name
S&P
Harris Packaged Goods
Urban Educational Products
Maya Medical Technologies
Month
1
2
3
4
5
6
7
8
9
10
11
12
1
2
3
4
5
6
7
8
9
10
11
12
1
2
3
4
5
6
7
8
9
10
11
12
1
2
3
4
5

Description
S&P 500 Index
Producer of packaged food products that food chains brand with their own name
Small and young firm with good prospects developing educational products
Medium-size biotechnology firm
S&P
-6.71
1.29
2.65
-2.49
9.75
-0.67
-0.32
-9.04
-4.87
-0.43
6.46
2.79
4.36
7.15
2.42
0.24
4.31
-4.58
4.66
2.37
-1.67
1.34
-4.03
11.44
-1.86
1.30
-1.94
2.94
0.49
-1.49
4.09
-2.05
1.18
0.35
3.40
1.23
0.84
1.36
2.11
-2.42
2.68

Harris
-6.54
0.63
-0.51
-4.22
1.53
2.49
0.32
-9.39
-0.10
5.56
2.94
-0.98
-1.89
5.72
2.09
1.62
-1.03
-1.40
4.31
3.61
1.56
2.76
2.20
8.20
-5.57
-2.88
-0.50
3.97
0.60
0.69
8.92
-4.85
1.44
-1.62
-2.48
6.33
2.16
6.84
3.41
0.58
-5.55

Urban
-0.31
8.21
12.23
-2.89
18.54
6.38
-1.38
-16.12
-13.83
7.41
-0.66
2.44
8.72
-1.87
-2.69
-2.76
7.28
-6.49
1.27
7.72
1.91
-3.06
-9.74
7.81
6.44
-9.19
-4.72
0.18
0.18
-9.22
0.21
-6.35
-1.44
-2.14
-1.84
14.13
-12.25
-1.87
1.72
8.47
4.83

Maya
-9.68
-9.99
3.90
-5.78
18.37
-3.42
3.42
-26.63
-12.04
0.96
18.75
3.51
5.03
0.31
5.24
4.15
-0.47
-20.10
0.37
6.88
-0.88
-0.54
-7.18
10.47
-15.68
25.54
-2.47
-5.98
-1.89
-10.46
0.92
-5.15
15.96
-2.40
13.11
-0.43
-11.44
-4.84
18.41
-0.10
4.12

1993
1993
1993
1993
1993
1993
1993
1994
1994
1994
1994
1994
1994
1994
1994
1994
1994
1994
1994
1995
1995
1995
1995
1995
1995
1995
1995
1995
1995
1995
1995
1996
1996
1996
1996
1996
1996
1996
1996
1996
1996
1996
1996
1997
1997
1997
1997
1997
1997
1997
1997
1997

6
7
8
9
10
11
12
1
2
3
4
5
6
7
8
9
10
11
12
1
2
3
4
5
6
7
8
9
10
11
12
1
2
3
4
5
6
7
8
9
10
11
12
1
2
3
4
5
6
7
8
9

0.29
-0.40
3.79
-0.77
2.07
-0.95
1.21
3.40
-2.71
-4.36
1.28
1.64
-2.45...


Anonymous
I was struggling with this subject, and this helped me a ton!

Studypool
4.7
Indeed
4.5
Sitejabber
4.4

Similar Content

Related Tags