Systems Engineering Principles And Practice Discussion Help

Anonymous
timer Asked: Mar 29th, 2019
account_balance_wallet $10

Question Description

The replies must add something significant and associated with the posts’ subject, which should correspond with CHAPTER 12 in the attached textbook.

PLEASE MAKE SURE OF THE FOLLOWING:

- Wright it in your own words (do not just copy and paste, paraphrasing is mandatory.)

- The replies must reflect and be an extension to the posts.

- Make them in order as: first reply and second reply.

Unformatted Attachment Preview

SYSTEMS ENGINEERING PRINCIPLES AND PRACTICE SECOND EDITION Alexander Kossiakoff William N. Sweet Samuel J. Seymour Steven M. Biemer A JOHN WILEY & SONS, INC. PUBLICATION ffirs02.indd iii 2/8/2011 11:05:45 AM ffirs04.indd vi 2/8/2011 11:05:47 AM SYSTEMS ENGINEERING PRINCIPLES AND PRACTICE ffirs.indd i 2/8/2011 11:05:44 AM WILEY SERIES IN SYSTEMS ENGINEERING AND MANAGEMENT Andrew P. Sage, Editor A complete list of the titles in this series appears at the end of this volume. ffirs01.indd ii 2/8/2011 11:05:44 AM SYSTEMS ENGINEERING PRINCIPLES AND PRACTICE SECOND EDITION Alexander Kossiakoff William N. Sweet Samuel J. Seymour Steven M. Biemer A JOHN WILEY & SONS, INC. PUBLICATION ffirs02.indd iii 2/8/2011 11:05:45 AM Copyright © 2011 by John Wiley & Sons, Inc. All rights reserved. Published by John Wiley & Sons, Inc., Hoboken, New Jersey Published simultaneously in Canada No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 750-4470, or on the web at www.copyright.com. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permission. Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in preparing this book, they make no representations or warranties with respect to the accuracy or completeness of the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. No warranty may be created or extended by sales representatives or written sales materials. The advice and strategies contained herein may not be suitable for your situation. You should consult with a professional where appropriate. Neither the publisher nor author shall be liable for any loss of profit or any other commercial damages, including but not limited to special, incidental, consequential, or other damages. For general information on our other products and services or for technical support, please contact our Customer Care Department within the United States at (800) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002. Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic formats. For more information about Wiley products, visit our web site at www.wiley.com. Library of Congress Cataloging-in-Publication Data: Systems engineering : principles and practice/Alexander Kossiakoff ... [et al.].—2nd ed. p. cm.—(Wiley series in systems engineering and management; 67) Rev. ed. of: Systems engineering: principles and practices/Alexander Kossiakoff, William N. Sweet. 2003. ISBN 978-0-470-40548-2 (hardback) 1. Systems engineering. I. Kossiakoff, Alexander, 1945– II. Title. TA168.K68 2010 620.001′171–dc22 2010036856 Printed in the United States of America oBook ISBN: 9781118001028 ePDF ISBN: 9781118001011 ePub ISBN: 9781118009031 10 ffirs03.indd iv 9 8 7 6 5 4 3 2 1 2/8/2011 11:05:46 AM To Alexander Kossiakoff, who never took “no” for an answer and refused to believe that anything was impossible. He was an extraordinary problem solver, instructor, mentor, and friend. Samuel J. Seymour Steven M. Biemer ffirs04.indd v 2/8/2011 11:05:47 AM ffirs04.indd vi 2/8/2011 11:05:47 AM CONTENTS LIST OF ILLUSTRATIONS xiii LIST OF TABLES xvii PREFACE TO THE SECOND EDITION xix PREFACE TO THE FIRST EDITION PART I 1 2 xxiii FOUNDATIONS OF SYSTEMS ENGINEERING 1 SYSTEMS ENGINEERING AND THE WORLD OF MODERN SYSTEMS 1.1 What Is Systems Engineering? 1.2 Origins of Systems Engineering 1.3 Examples of Systems Requiring Systems Engineering 1.4 Systems Engineering as a Profession 1.5 Systems Engineer Career Development Model 1.6 The Power of Systems Engineering 1.7 Summary Problems Further Reading 3 3 5 10 12 18 21 23 25 26 SYSTEMS ENGINEERING LANDSCAPE 2.1 Systems Engineering Viewpoint 2.2 Perspectives of Systems Engineering 2.3 Systems Domains 2.4 Systems Engineering Fields 2.5 Systems Engineerng Approaches 2.6 Systems Engineering Activities and Products 2.7 Summary Problems Further Reading 27 27 32 34 35 36 37 38 39 40 vii ftoc.indd vii 2/8/2011 11:05:50 AM viii CONTENTS 3 STRUCTURE OF COMPLEX SYSTEMS 3.1 System Building Blocks and Interfaces 3.2 Hierarchy of Complex Systems 3.3 System Building Blocks 3.4 The System Environment 3.5 Interfaces and Interactions 3.6 Complexity in Modern Systems 3.7 Summary Problems Further Reading 4 THE 4.1 4.2 4.3 4.4 4.5 4.6 5 SYSTEMS ENGINEERING MANAGEMENT 5.1 Managing System Development and Risks 5.2 WBS 5.3 SEMP 5.4 Risk Management 5.5 Organization of Systems Engineering 5.6 Summary Problems Further Reading PART II 6 ftoc.indd viii SYSTEM DEVELOPMENT PROCESS Systems Engineering through the System Life Cycle System Life Cycle Evolutionary Characteristics of the Development Process The Systems Engineering Method Testing throughout System Development Summary Problems Further Reading CONCEPT DEVELOPMENT STAGE NEEDS ANALYSIS 6.1 Originating a New System 6.2 Operations Analysis 6.3 Functional Analysis 6.4 Feasibility Definition 41 41 42 45 51 58 60 64 66 67 69 69 70 82 87 103 106 108 109 111 111 113 117 120 128 132 133 134 137 139 139 146 151 153 2/8/2011 11:05:50 AM ix CONTENTS 6.5 6.6 6.7 Needs Validation System Operational Requirements Summary Problems Further Reading 155 158 162 163 164 7 CONCEPT EXPLORATION 7.1 Developing the System Requirements 7.2 Operational Requirements Analysis 7.3 Performance Requirements Formulation 7.4 Implementation of Concept Exploration 7.5 Performance Requirements Validation 7.6 Summary Problems Further Reading 165 165 170 178 185 189 191 193 194 8 CONCEPT DEFINITION 8.1 Selecting the System Concept 8.2 Performance Requirements Analysis 8.3 Functional Analysis and Formulation 8.4 Functional Allocation 8.5 Concept Selection 8.6 Concept Validation 8.7 System Development Planning 8.8 Systems Architecting 8.9 System Modeling Languages: Unified Modeling Language (UML) and Systems Modeling Language (SysML) 8.10 Model-Based Systems Engineering (MBSE) 8.11 System Functional Specifications 8.12 Summary Problems Further Reading 197 197 201 206 212 214 217 219 222 DECISION ANALYSIS AND SUPPORT 9.1 Decision Making 9.2 Modeling throughout System Development 9.3 Modeling for Decisions 9.4 Simulation 255 256 262 263 272 9 ftoc.indd ix 228 243 246 247 250 252 2/8/2011 11:05:50 AM x CONTENTS 9.5 9.6 9.7 9.8 PART III ftoc.indd x Trade-Off Analysis Review of Probability Evaluation Methods Summary Problems Further Reading 282 295 299 308 311 312 ENGINEERING DEVELOPMENT STAGE 315 10 ADVANCED DEVELOPMENT 10.1 Reducing Program Risks 10.2 Requirements Analysis 10.3 Functional Analysis and Design 10.4 Prototype Development as a Risk Mitigation Technique 10.5 Development Testing 10.6 Risk Reduction 10.7 Summary Problems Further Reading 317 317 322 327 333 340 349 350 352 354 11 SOFTWARE SYSTEMS ENGINEERING 11.1 Coping with Complexity and Abstraction 11.2 Nature of Software Development 11.3 Software Development Life Cycle Models 11.4 Software Concept Development: Analysis and Design 11.5 Software Engineering Development: Coding and Unit Test 11.6 Software Integration and Test 11.7 Software Engineering Management 11.8 Summary Problems Further Reading 355 356 360 365 373 385 393 396 402 405 406 12 ENGINEERING DESIGN 12.1 Implementing the System Building Blocks 12.2 Requirements Analysis 12.3 Functional Analysis and Design 12.4 Component Design 12.5 Design Validation 409 409 414 416 419 432 2/8/2011 11:05:50 AM xi CONTENTS 13 12.6 CM 12.7 Summary Problems Further Reading 436 439 441 442 INTEGRATION AND EVALUATION 13.1 Integrating, Testing, and Evaluating the Total System 13.2 Test Planning and Preparation 13.3 System Integration 13.4 Developmental System Testing 13.5 Operational Test and Evaluation 13.6 Summary Problems Further Reading 443 443 450 455 462 467 475 478 478 PART IV 481 14 PRODUCTION 14.1 Systems Engineering in the Factory 14.2 Engineering for Production 14.3 Transition from Development to Production 14.4 Production Operations 14.5 Acquiring a Production Knowledge Base 14.6 Summary Problems Further Reading 483 483 485 489 492 497 500 502 503 15 OPERATIONS AND SUPPORT 15.1 Installing, Maintaining, and Upgrading the System 15.2 Installation and Test 15.3 In-Service Support 15.4 Major System Upgrades: Modernization 15.5 Operational Factors in System Development 15.6 Summary Problems Further Reading 505 505 507 512 516 520 522 523 524 INDEX ftoc.indd xi POSTDEVELOPMENT STAGE 525 2/8/2011 11:05:50 AM ftoc.indd xii 2/8/2011 11:05:50 AM LIST OF ILLUSTRATIONS 1.1 1.2a 1.2b 1.3a 1.3b 1.4 2.1a 2.1b 2.2 2.3 2.4 2.5 2.6 2.7 3.1 3.2 3.3 3.4 3.5 3.6 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 Career opportunities and growth Technical orientation phase diagram Technical orientation population density distribution Systems engineering (SE) career elements derived from quality work experiences Components of employer development of systems engineers “T” model for systems engineer career development Performance versus cost Performance/cost versus cost The ideal missile design from the viewpoint of various specialists The dimensions of design, systems engineering, and project planning and control Systems engineering domains Examples of systems engineering fields Examples of systems engineering approaches Life cycle systems engineering view Knowledge domains of systems engineer and design specialist Context diagram Context diagram for an automobile Environments of a passenger airliner Functional interactions and physical interfaces Pyramid of system hierarchy DoD system life cycle model System life cycle model Principal stages in system life cycle Concept development phases of system life cycle Engineering development phases in system life cycle Principal participants in a typical aerospace system development DoD MIL-STD499B IEEE-1220 systems engineering process EIA-632 systems engineering process 14 16 16 19 19 20 29 29 31 32 34 35 36 37 45 53 54 56 59 63 71 72 75 76 78 86 90 90 91 xiii fbetw01.indd xiii 2/9/2011 6:29:47 PM xiv 4.10 4.11 4.12 4.13 5.1 5.2 5.3 5.4 5.5 6.1 6.2 6.3 6.4 6.5 7.1 7.2 7.3 7.4 7.5 7.6 8.1 8.2 8.3 8.4 8.5 8.6 8.7 8.8 8.9 8.10 8.11 8.12 8.13 8.14 8.15 8.16 8.17 8.18a 8.18b 8.19 8.20 9.1 9.2 9.3 9.4 fbetw01.indd xiv LIST OF ILLUSTRATIONS ISO-15288 Systems engineering process Systems engineering method top-level flow diagram Systems engineering method flow diagram Spiral model of the defense system life cycle Systems engineering as a part of project management Place of SEMP in program management plans Variation of program risk and effort throughout system development Example of a risk mitigation waterfall chart An example of a risk cube display Needs analysis phase in the system life cycle Needs analysis phase flow diagram Objectives tree structure Example objectives tree for an automobile Analysis pyramid Concept exploration phase in system life cycle Concept exploration phase flow diagram Simple requirements development process Triumvirate of conceptual design Hierarchy of scenarios Function category versus functional media Concept definition phase in system life cycle Concept definition phase flow diagram IDEF0 functional model structure Functional block diagram of a standard coffeemaker Traditional view of architecture DODAF version 2.0 viewpoints UML models Use case diagram UML activity diagram UML sequence diagram Example of a class association Example of a class generalization association Class diagram of the library check-out system SysML models SysML requirements diagram SysML block definition SysML block associations SysML functional hierarchy tree SysML activity diagram Baker ’s MDSD subprocesses Baker ’s information model for MDSD Basic decision-making process Traditional hierarchical block diagram Context diagram of a passenger aircraft Air defense functional flow block diagram 92 92 94 104 112 118 121 122 124 140 147 150 151 156 166 170 171 175 177 181 198 202 208 210 223 227 229 231 233 234 235 236 237 237 238 240 241 242 242 244 244 256 265 266 267 2/9/2011 6:29:47 PM LIST OF ILLUSTRATIONS 9.5 9.6 9.7 9.8 9.9 9.10 9.11 9.12 9.13 9.14 9.15 9.16 9.17 9.18 9.19 9.20 10.1 10.2 10.3 11.1 11.2 11.3 11.4 11.5 11.6 11.7 11.8 11.9 11.10 11.11 11.12 11.13 12.1 12.2 12.3 13.1 13.2 13.3 13.4 13.5 13.6a 13.6b 13.7 14.1 14.2 fbetw01.indd xv System effectiveness simulation Hardware-in-the-loop simulation Virtual reality simulation Candidate utility functions Criteria profile Union of two events Conditional events AHP example AHP results Decision tree example Decision path Decision tree solved Utility function Decision tree solved with a utility function Example of cost-effectiveness integration QFD house of quality Advanced development phase in system life cycle Advanced development phase flow diagram Test and evaluation process of a system element IEEE software systems engineering process Software hierarchy Notional 3-tier architecture Classical waterfall software development cycle Software incremental model Spiral model State transition diagram in concurrent development model User needs, software requirements and specifications Software generation process Principles of modular partitioning Functional flow block diagram example Data flow diagram: library checkout Robustness diagram: library checkout Engineering design phase in system life cycle Engineering design phase in relation to integration and evaluation Engineering design phase flow diagram Integration and evaluation phase in system life cycle Integration and evaluation phase in relation to engineering design System test and evaluation team System element test configuration Subsystems test configuration Operation of a passenger airliner Operational testing of an airliner Test realism versus cost Production phase in system life cycle Production phase overlap with adjacent phases xv 275 277 280 289 290 297 297 300 301 302 302 303 304 304 305 307 318 321 345 357 359 359 367 369 370 371 376 376 379 381 381 384 410 411 413 445 445 446 456 459 469 469 471 484 485 2/9/2011 6:29:47 PM xvi 14.3 15.1 15.2 15.3 15.4 fbetw01.indd xvi LIST OF ILLUSTRATIONS Production operation system Operations and support phase in system life cycle System operations history Non-disruptive installation via simulation Non-disruptive installation via a duplicate system 494 506 507 510 511 2/9/2011 6:29:47 PM LIST OF TABLES 1.1 1.2 2.1 2.2 3.1 3.2 3.3 3.4 4.1 4.2 4.3 5.1 5.2 5.3 5.4 6.1 7.1 8.1 8.2 9.1 9.2 9.3 9.4 9.5 9.6 10.1 10.2 10.3 10.4 11.1 Examples of Engineered Complex Systems: Signal and Data Systems Examples of Engineered Complex Systems: Material and Energy Systems Comparison of Systems Perspectives Systems Engineering Activities and Documents System Design Hierarchy System Functional Elements Component Design Elements Examples of Interface Elements Evolution of System Materialization through the System Life Cycle Evolution of System Representation Systems Engineering Method over Life Cycle System Product WBS Partial Breakdown Structure Risk Likelihood Risk Criticality Sample Risk Plan Worksheet Status of System Materialization at the Needs Analysis Phase Status of System Materialization of the Concept Exploration Phase Status of System Materialization of Concept Definition Phase Use Case Example—“Check-out Book” Decision Framework Simon’s Decision Process Weighted Sum Integration of Selection Criteria Weighted Sum of Actual Measurement Weighted Sum of Utility Scores Trade-Off Matrix Example Status of System Materialization at the Advanced Development Phase Development of New Components Selected Critical Characteristics of System Functional Elements Some Examples of Special Materials Software Types 11 11 33 38 43 47 49 60 84 88 102 114 125 125 128 143 168 200 232 259 261 288 289 290 293 320 326 329 335 361 xvii fbetw02.indd xvii 2/9/2011 6:29:55 PM xviii 11.2 11.3 11.4 11.5 11.6 11.7 11.8 11.9 11.10 12.1 12.2 13.1 13.2 13.3 fbetw02.indd xviii LIST OF TABLES Categories of Software-Dominated Systems Differences between Hardware and Software Systems Engineering Life Cycle and the Waterfall Model Commonly Used Computer Languages Some Special-Purpose Computer Languages Characteristics of Prototypes Comparison of Computer Interface Modes Capability Levels Maturity Levels Status of System Materialization at the Engineering Design Phase Configuration Baselines Status of System Materialization at the Integration and Evaluation Phase System Integration and Evaluation Process Parallels between System Development and Test and Evaluation (T&E) Planning 362 364 368 387 388 390 391 398 399 412 437 448 449 451 2/9/2011 6:29:55 PM PREFACE TO THE SECOND EDITION It is an incredible honor and privilege to follow in the footsteps of an individual who had a profound influence on the course of history and the field of systems engineering. Since publication of the first edition of this book, the field of systems engineering has seen significant advances, including a significant increase in recognition of the discipline, as measured by the number of conferences, symposia, journals, articles, and books available on this crucial subject. Clearly, the field has reached a high level of maturity and is destined for continued growth. Unfortunately, the field has also seen some sorrowful losses, including one of the original authors, Alexander Kossiakoff, who passed away just 2 years after the publication of the book. His vision, innovation, excitement, and perseverance were contagious to all who worked with him and he is missed by the community. Fortunately, his vision remains and continues to be the driving force behind this book. It is with great pride that we dedicate this second edition to the enduring legacy of Alexander Ivanovitch Kossiakoff. ALEXANDER KOSSIAKOFF, 1914–2005 Alexander Kossiakoff, known to so many as “Kossy,” gave shape and direction to the Johns Hopkins University Applied Physics Laboratory as its director from 1969 to 1980. His work helped defend our nation, enhance the capabilities of our military, pushed technology in new and exciting directions, and bring successive new generations to an understanding of the unique challenges and opportunities of systems engineering. In 1980, recognizing the need to improve the training and education of technical professionals, he started the master of science degree program at Johns Hopkins University in Technical Management and later expanded it to Systems Engineering, one of the first programs of its kind. Today, the systems engineering program he founded is the largest part-time graduate program in the United States, with students enrolled from around the world in classroom, distance, and organizational partnership venues; it continues to evolve as the field expands and teaching venues embrace new technologies, setting the standard for graduate programs in systems engineering. The first edition of the book is the foundational systems engineering textbook for colleges and universities worldwide. xix fpref01.indd xix 2/8/2011 3:49:23 PM xx PREFACE TO THE SECOND EDITION OBJECTIVES OF THE SECOND EDITION Traditional engineering disciplines do not provide the training, education, and experience necessary to ensure ...
Purchase answer to see full attachment

Tutor Answer

agneta
School: Cornell University

Attached.

Running head: DISCUSSION REPLIES

1

Discussion Replies
Institution Affiliation
Date

DISCUSSION REPLIES

2

First Reply
I concur with the sentiments there are various aspects of the Preliminary Design Review
(PDR) process. These aspects include those involving technical objectives, highly risky areas,
design requirements, and specifications and test plans (Kossiakoff et al. 2011). However, it is
also import...

flag Report DMCA
Review

Anonymous
awesome work thanks

Similar Questions
Related Tags

Brown University





1271 Tutors

California Institute of Technology




2131 Tutors

Carnegie Mellon University




982 Tutors

Columbia University





1256 Tutors

Dartmouth University





2113 Tutors

Emory University





2279 Tutors

Harvard University





599 Tutors

Massachusetts Institute of Technology



2319 Tutors

New York University





1645 Tutors

Notre Dam University





1911 Tutors

Oklahoma University





2122 Tutors

Pennsylvania State University





932 Tutors

Princeton University





1211 Tutors

Stanford University





983 Tutors

University of California





1282 Tutors

Oxford University





123 Tutors

Yale University





2325 Tutors