Need physics help to find the displacement in the following figure.

Physics
Tutor: None Selected Time limit: 1 Day

Nov 16th, 2015

Thank you for the opportunity to help you with your question!

First, we can find the speed of the first ball at its bottom through conservation of energy

mgh = .5mv^2 (mass cancels)

(9.8)(.1) = (.5)v^2

v = 1.4 m/s

Then through conservation of momentum we can find the speed the two will have after the collision

(2)(1.4) = (5)(v)

v = .56 m/s

That is the preliminary information we need...

Part A)

To find the frequency, apply  \(T = 2\pi\sqrt{l/g}\)

T = (2pi)(.5/9/8)^.5

T = 1.42 sec

The frequency is the inverse of that. 1/1.42 = .705 Hz

Part B)

Now we can find how high the two masses travel after the collision

mgh = .5mv^2 (again mass cancels)

(9.8)(h) = (.5)(.56)^2

h = .016 m (1.6 cm)

From that, we can find the angular displacement

The hypotenuse is 50 cm

The opposite side from by the triangle made is 50 -1.6 = 48.4 cm

cos(angle) = 48.4/50

angle = 14.53 degrees


Please let me know if you need any clarification. I'm always happy to answer your questions.
Nov 16th, 2015

Studypool's Notebank makes it easy to buy and sell old notes, study guides, reviews, etc.
Click to visit
The Notebank
...
Nov 16th, 2015
...
Nov 16th, 2015
Dec 5th, 2016
check_circle
Mark as Final Answer
check_circle
Unmark as Final Answer
check_circle
Final Answer

Secure Information

Content will be erased after question is completed.

check_circle
Final Answer