Motion in two dimensions, paraphrasing help

Jan 13th, 2016
Price: $10 USD

Question description

Graded Assignment

Lab Report

Answer the questions, using complete sentences. When you have finished, submit this assignment to your teacher by the due date for full credit.

Motion in Two Dimensions 1

(5 points)


1.  Is the relationship between velocity and centripetal force a direct, linear relationship or is it a nonlinear square relationship? Explain the answer using your graphs of Fc vs. v and Fc vs.v2. What is the precise mathematical relationship between velocity and centripetal force?


The relationship between velocity and centripetal force is a nonlinear square relationship. When we are referring to a graph a straight line would be said to be linear. Looking at our graph we can see that it’s not a straight line thus we know it’s a non linear relationship.

And we know From the formula that the relationship between centripetal force and velocity is that Centripetal Force is directly proportional to velocity squared and that gives us our precise mathematical relationship between the both .

(4 points)


2.  [img width="67" height="36" src="file:///C:/Users/Spare/AppData/Local/Temp/msohtmlclip1/01/clip_image002.gif" v:shapes="_x0000_s1026">y = mx, to the equation   , and explain what the slope of the graph of Fc vs. v2 represents. Remember that the m in the equation for a line represents the slope, and the m in the centripetal force equation
represents the mass of the stopper.

Answer: Our equation shows us that Centripetal Force the and the square of velocity have a direct proportion

Which means as one is increased the other increases as well considering r in that case is constant.

This is verified by our centripetal force vs velocity square graph where as we plot the points we can see this direct relationship between the points and the graph will give us a straight line.

This means that this relationship is linear.

The equation y=mx has a graph which has a line with a positive slope that passes through the origin where y is proportional to x and the proportion constant would be m.

        We can see that centripetal force and Velocity squared are also proportional

v squared by r is equal to centripetal acceleration so we can say that Centripetal force is Proportional to Centripetal acceleration where m is the constant


The slope of Fc/v^2 is basically m which represents the mass/r which is the radius 

So we can deduct that the slope of the graph for the equation Fc vs. v2  

represents the ratio between mass and the radius (lenght of the chain in this case

(4 points)


3.  If you shorten the length of the chain, keep other variables constant, and repeat the experiment, how will the centripetal force change? Explain the relationship between centripetal force and the length of the chain.

Answer:From our equation we can see that Centripetal force is inversely proportional to the radius or the length of the chain in our case

So if we are planning to keep all the variables constant and only change the r value by decreasing it

This will mean a larger centripetal force will be needed to for an object with the same mass and velocity.

Motion in Two Dimensions 2

(6 points)


4.  Complete the tables.

Answer: degree of elevation: 4.7

Length of ramp (cm)

Average drop time (s)

Average distance the ball traveled (m)

Horizontal velocity (m/s)

























 (6 points)


5.  For each angle of elevation, what is the relationship between the velocity of the ball and the distance (x) that the ball traveled?

Answer: What we can say is that the angle of the ramp could have determined the speed of the ball increasing proportionally. The table provides us with evidence that the length of ramp did have an effect on the average distance the ball had travelled. WE can see that, the further done the ball was brown at , the longer it had travelled when reaching the ground .  This is due to the fact that when the balls speed increased, the kinetic energy acting upon it also increase and as the kinetic force increased, the friction force also increased. The angle of elevation determines how quickly the ball could travel down the ramp, the more slanted that ramp is the faster the ball can go through the ramp and also create a higher average distance travelled by ball. This is how they are all linked together. The more the less time the average drop took, the more average distance the ball travelled, which further resulted in a higher horizontal velocity as the horizontal velocity was calculated via dividing the average distance the ball traveled by the average drop time.

Tutor Answer

(Top Tutor) Daniel C.
School: Purdue University

Studypool has helped 1,244,100 students

Review from our student for this Answer

Jan 13th, 2016
"Excellent work as usual"
Ask your homework questions. Receive quality answers!

Type your question here (or upload an image)

1830 tutors are online

Brown University

1271 Tutors

California Institute of Technology

2131 Tutors

Carnegie Mellon University

982 Tutors

Columbia University

1256 Tutors

Dartmouth University

2113 Tutors

Emory University

2279 Tutors

Harvard University

599 Tutors

Massachusetts Institute of Technology

2319 Tutors

New York University

1645 Tutors

Notre Dam University

1911 Tutors

Oklahoma University

2122 Tutors

Pennsylvania State University

932 Tutors

Princeton University

1211 Tutors

Stanford University

983 Tutors

University of California

1282 Tutors

Oxford University

123 Tutors

Yale University

2325 Tutors