### Question Description

Do following questions in matlab. Due in 9 days.

Do following questions in matlab. Due in 9 days.

### Unformatted Attachment Preview

Purchase answer to see full attachment

## Final Answer

What's up? I've finished the assignment, files in attachment are:.nb -> Mathematica notebook files.pdf -> Printable versions of the .nb'sending with Unev -> Unevaluated version, just the codeending with Ev -> Evaluated version (all the code was evaluated, has all the graphs and variables)If you have any questions or need anything else, please feel free to ask.

In[399]:=

Print["Item 1"]

Print["Norm[{2,0}] = ", Norm[{2, 0}]]

Print["Norm[{2,1}] = ", Norm[{2, 1}]]

Item 1

Norm[{2,0}] = 2

Norm[{2,1}] =

In[402]:=

5

Print["Item 2"]

colorList = TableHuei 25, Point[{i, Sin[i]}], {i, 1, 25}

Item 2

Out[403]=

In[404]:=

{{

{

{

{

{

{

{

{

{

,

,

,

,

,

,

,

,

,

Point[{1, Sin[1]}]}, {

Point[{3, Sin[3]}]}, {

Point[{6, Sin[6]}]}, {

Point[{9, Sin[9]}]}, {

Point[{12, Sin[12]}]},

Point[{14, Sin[14]}]},

Point[{17, Sin[17]}]},

Point[{20, Sin[20]}]},

Point[{23, Sin[23]}]},

,

,

,

,

{

{

{

{

{

Point[{2, Sin[2]}]},

Point[{4, Sin[4]}]}, { , Point[{5, Sin[5]}]},

Point[{7, Sin[7]}]}, { , Point[{8, Sin[8]}]},

Point[{10, Sin[10]}]}, { , Point[{11, Sin[11]}]},

, Point[{13, Sin[13]}]},

, Point[{15, Sin[15]}]}, { , Point[{16, Sin[16]}]},

, Point[{18, Sin[18]}]}, { , Point[{19, Sin[19]}]},

, Point[{21, Sin[21]}]}, { , Point[{22, Sin[22]}]},

, Point[{24, Sin[24]}]}, { , Point[{25, Sin[25]}]}}

Print["Item 3"]

Print["Graphics[colorList]"]

Graphics[colorList]

Print["Graphics[colorList, Axes→True]"]

Graphics[colorList, Axes → True]

Item 3

Graphics[colorList]

Out[406]=

Graphics[colorList, Axes→True]

1.0

Out[408]=

-1.0

In[409]:=

10

15

20

25

Print["Item 4"]

a := RandomVariate[NormalDistribution[0, 1]]

b := {a, a}

Print["Variables a and b were created successfully."]

Print["Examples -> a: ", a, ", b: ", b]

Item 4

Variables a and b were created successfully.

Examples -> a: 0.599055, b: {-0.275378, -0.515623}

In[414]:=

Print["Item 5"]

walk2D[n_] := NestWhileList[# + b &, {0, 0}, Norm[#] < n &]

Print["Function walk2D created successfully."]

Print["Example -> walk2D[3]: ", walk2D[3]]

2

Math01Ev.nb

Item 5

Function walk2D created successfully.

Example -> walk2D[3]: {{0, 0}, {1.34494, 0.797894}, {0.465819, -0.400476},

{-0.316588, -0.275931}, {-1.40361, 0.352398}, {-2.60838, 0.236823},

{-2.1572, -0.514527}, {-2.49219, -1.32489}, {-2.82282, -1.46884}}

In[418]:=

Print["Item 6"]

addColor[myList_] := Module{m},

m = Length[myList];

TableHuei m, Point[myList[[i]]], {i, 1, m}

Print["Function addColor created successfully."]

Print["Example with the list {{2,0},{2,1}}"]

addColor[{{2, 0}, {2, 1}}]

Item 6

Function addColor created successfully.

Example with the list {{2,0},{2,1}}

Out[422]=

{{ , Point[{2, 0}]}, { , Point[{2, 1}]}}

In[423]:=

Print["Item 7"]

walkList = Table[walk2D[100], {20}]

Print["Variable walkList created successfully."]

Item 7

Out[424]=

{0, 0}, {- 0.846301, 0.651076}, {- 3.11587, 2.52302},

{- 4.49308, 2.83021}, {- 5.23227, 1.06317}, {- 3.82052, 1.7278},

{- 3.11877, 2.74399}, {- 4.08066, 3.50055}, {- 3.9096, 5.08908}, ⋯ 1506 ⋯ ,

{- 94.1458, - 23.3685}, {- 93.1996, - 23.543}, {- 93.4217, - 23.4482},

{- 92.4445, - 23.1849}, {- 94.2092, - 23.3653}, {- 94.1264, - 23.186},

{- 94.8156, - 23.0688}, {- 95.0994, - 24.2428}, {- 98.5425, - 25.8824}, ⋯ 19 ⋯

large output

show less

show more

show all

set size limit...

Variable walkList created successfully.

In[426]:=

Print["Item 8"]

lengthList = Table[Length[walkList[[i]]], {i, 1, 20}]

meanLength = N[Mean[lengthList]]

medianLength = N[Median[lengthList]]

Print["The random walks have a mean length of ",

meanLength, " and a median length of ", medianLength]

Item 8

Out[427]=

{1524, 6363, 2876, 5533, 3085, 4758, 7023, 1979, 2738,

2958, 1000, 1222, 3407, 2136, 2930, 12 990, 9494, 4588, 2322, 5731}

Out[428]=

4232.85

Out[429]=

3021.5

The random walks have a mean length of 4232.85 and a median length of 3021.5

Math01Ev.nb

In[431]:=

Print["Item 9"]

Manipulate[Graphics[addColor[walkList[[i]]], Axes...

Brown University

1271 Tutors

California Institute of Technology

2131 Tutors

Carnegie Mellon University

982 Tutors

Columbia University

1256 Tutors

Dartmouth University

2113 Tutors

Emory University

2279 Tutors

Harvard University

599 Tutors

Massachusetts Institute of Technology

2319 Tutors

New York University

1645 Tutors

Notre Dam University

1911 Tutors

Oklahoma University

2122 Tutors

Pennsylvania State University

932 Tutors

Princeton University

1211 Tutors

Stanford University

983 Tutors

University of California

1282 Tutors

Oxford University

123 Tutors

Yale University

2325 Tutors