Miami Dade College Chairside Salivary Diagnostics for Oral Diseases PPT

Anonymous

Question Description

4-5 slides for a powerpoint presentation:

answer these three topics:

*Blood Vs. saliva (could be a comparative table)

*types of salivary test available

*Role of the Dental Hygienist

I attached this article so that you have an idea of what is is, feel free to search info In any dental hygiene book.

Unformatted Attachment Preview

F E AT U R E Chairside salivary diagnostics for oral diseases SA L I VA T EST I N G P R O D U CTS GA I N I N M O M EN T U M BY SUSAN VOGELL, RDH, BS, MBA Saliva plays many important roles in the mouth. Saliva helps us breathe and swallow by lubricating the oral tissues. Enzymes found in saliva begin the digestive process. Saliva also helps protect the teeth from cariogenic bacteria. At present, saliva is rapidly gaining popularity as an important diagnostic tool, thereby offering the possibility to detect diseases earlier than before.1 Saliva is now being used to detect a growing number of oral diseases including caries, periodontal disease, and oral cancer, as well as systemic disorders. 2 Point-ofcare technologies offer the ability to help facilitate chairside saliva testing. 2 Some tests are readily available on the market and more are emerging. These exciting new medical advances will allow dental hygienists to expand their role in offering this valuable service to patients. In addition to facilitating early detection of a disease, salivary tests also offer an important educational aid for oral hygiene counseling and patient motivation. The National Institute of Dental and Craniofacial Research (NIDCR) is the primary funding agency for oral health research in the United States and has provided substantial research funding to develop saliva as a diagnostic medium. 3 With funding support from NIDCR, several research centers in the United States have successfully identified 1,166 proteins in human saliva and have classified the specific proteins associated with certain diseases. 3 62 | rdhmag.com THE BENEFITS OF USING SALIVA AS A DIAGNOSTIC FLUID Saliva is a clear, slightly acidic (pH = 6.07.0) watery fluid which is secreted from the major salivary glands including the parotid, submandibular, and sublingual glands in addition to other minor glands.4 It contains a variety of enzymes, hormones, antibodies, antimicrobial constituents, and cytokines. Many of these compounds enter the saliva through the blood, which is why most compounds found in blood are also present in saliva.2, 4 As a result, saliva acts as a source to monitor both oral and systemic health of an individual.2, 4 Saliva is often described as a mirror of oral and systemic health because it contains biomarkers.5 According to the National Institutes of Health, a biomarker is a substance that is measured objectively and evaluated as an indicator of normal biologic processes, pathogenic processes, and pharmacologic responses to a therapeutic intervention.6 The utilization of biomarkers serves as an early predictor for disease, thereby contributing to the effective prevention and treatment of the disease.7 Furthermore, biomarkers can aid in the assessment of potential health risks for the individual.7, 8 Saliva is an ideal alternative to blood.2, 4, 7 It contains sufficient quantities of disease biomarkers.4, 5 Saliva collection is noninvasive and easy because it is readily RDH | October 2013 C H A I R S I D E S A L I VA R Y D I A G N O S T I C S F O R O R A L D I S E A S E S available. Furthermore, the utilization of saliva instead of blood alleviates the common fear of needle sticking. Saliva is easier to handle during diagnostic procedures than blood, because it does not clot. 2 Collecting saliva has a reduced potential for accidental transmission of infectious diseases such as HIV and hepatitis compared to blood samples.4 By testing saliva, clinicians can help find the cause of a disease, monitor the activity of the disease, and evaluate the success of the therapy.9 Salivary diagnostics offer dentists and dental hygienists the ability to provide a higher standard of care for patients. Incorporating the appropriate salivary diagnostic test into practice is easy, because administering the tests take very little time. Salivary test results can help the clinician formulate an individualized therapy plan for both professional care and oral hygiene home care. sure the amounts of multiple biomarkers in a small saliva sample.10, 13 By using saliva as the diagnostic medium, POC technologies will be able to provide rapid, simple, inexpensive, and accurate measurements directly from saliva. 2 Incorporating POC salivary tests into the dental office will substantially change the dentist’s and dental hygienist’s roles in prevention, risk assessment, and disease management.11 In addition, due to its simplicity and low cost, POC salivary tests may be advantageous from a public-health perspective. 2 Overall, chairside salivary tests will translate into improved access and health-care outcomes for patients.12 Currently, biologists and engineers are developing chairside saliva diagnostic technologies for oral diseases such as dental caries, periodontal diseases, and oral cancer. 2 SALIVA TESTING FOR CARIES POINT-OF-CARE TESTING The overall goal of point-of-care (POC) testing is to move salivary diagnostics out of the laboratory and into clinical practice to allow for more timely diagnosis of the disease. 2 POC testing is testing that can be rapidly performed directly at the dental clinic, without the need for steps such as sending samples to a laboratory. 2 This process reduces turnaround time, thereby allowing therapy to begin immediately and thus improving the quality of care delivered. Moreover, by offering immediate results, problems such as patient follow-up can be averted. In addition, these types of tests can lower overall costs, because they will eliminate the need to draw blood and avoid the cost associated with sample shipping and handling to a centralized laboratory.10 A newer generation of POC technology is under development.10 The technology, called lab-on-a-chip, seeks to integrate and automate all the complexities of a laboratory procedure into a device the size of a computer chip.13 This sophisticated technology will be able to mea- 64 | rdhmag.com Dental caries is still highly prevalent among all age groups.15 Dental caries is caused by bacterial plaque that in combination with fermentable carbohydrates produces acids. These acids lower the pH at the surface of the tooth, compromising the enamel, dentin, and cementum, and ultimately affecting the structural integrity of the tooth. The disease is multifactorial, involving a combination of biological and environmental factors.16 An individual caries-risk assessment can aid in the identification of etiological factors responsible for the disease.17 Salivary tests are included in the cariesrisk assessment and are important in the identification of high-caries-risk individuals.17 There is no known single salivary factor sufficient to lead to a reliable diagnosis of dental caries to date.15 As salivary diagnostic technology continues to develop, the likelihood of predicting dental caries before tooth demineralization occurs is promising.17 Currently, there are salivary tests that when used in combination with caries risk assessment tools can help the dentist to make a diagnosis.15 The salivary tests most com- monly used for this purpose are salivary bacteria count, salivary flow rate (resting and stimulated), salivary pH and buffer capacity, and finally biofilm activity level.18 Salivary bacteria count Although caries is a multifactorial disease, it has been shown that specific oral bacteria play a significant role in caries development.15 A great deal of evidence supports the association of Streptococcus mutans (SM) and lactobacilli (LB) with dental caries; however, Actinomyces and Candida have also been implicated in the disease.15 SM are highly cariogenic because they produce copious amounts of acid, they are very adherent, and they are capable of rapid uptake of sucrose in competition with other plaque bacteria.15 LB are also acid-producing and prefer to live in low-pH niches that are difficult to clean.15 Two commercially available salivary bacterial cultural tests are Dentocult Strip Mutans (Orion Diagnostica, Espoo, Finland) and Ivoclar CRT (Ivoclar Vivadent, Amherst, N.Y.). Both tests can detect levels of SM and LB, but each test requires a 48hour incubation period and a follow-up appointment for discussing the results with the patients. Another test, Saliva-Check Mutans (GC America), resolves the recall issue as the test can detect salivary SM levels chairside in 15 minutes (see chart). The findings of salivary microbial tests for detection of cariogenic bacteria can be used for motivation of patients on an individual level. For example, it has been observed that mothers’ saliva is the major source of SM transmission to their infants.19 When mothers are informed of preventive measures that interrupt SM transmission, there is a decrease in caries occurrence in children 3 years of age and younger.19 Salivary tests that detect SM are also justified for use for preschool children as it has been observed that a delay in colonization of SM is associated with a reduced level of decay.19 Testing also aids in determining recall appointment interval length and helps evaluate the efficacy of oral hygiene efforts at home. RDH | October 2013 C H A I R S I D E S A L I VA R Y D I A G N O S T I C S F O R O R A L D I S E A S E S In addition to saliva testing for bacteria counts, saliva should be tested for quality, quantity, and buffering capacity. tool to modify behavior in choosing products that will help neutralize acid. Salivary buffer capacity Saliva flow Saliva offers an important protective role in maintaining oral health.20 Insufficient salivary flow may lead to prolonged demineralization and consequently dental caries.20 Testing salivary flow rate can aid in predicting future caries susceptibility, diagnosing salivary gland hypofunction, and medical compromise from illness and/or medication.18, 20 Saliva can be categorized as resting (unstimulated) or stimulated. Type, intensity, and duration of stimulation and the time of day, diet, age, sex, certain diseases, and a number of medications all affect the salivary flow rate.17 The strongest evidence linking decreased salivary flow with caries is in cases of Sjögren’s syndrome, xerostomia, and radiation therapy.19 The stimulated flow rate can be easily tested in the dental office or clinic by having the patient chew on paraffin wax and expectorate into a graduated cup, measuring mls. Normal values are 8.6mL/5 min for women and 10.1-mL/5 min for men.17 Inadequate saliva is measured as less than 0.7 ml of stimulated saliva per minute.17 If the flow rate remains low over time, this can place a patient at high or extreme risk for caries.17 While it can be concluded that the absence of salivary flow will most likely lead to dental caries, there are a number of other factors that can enhance saliva’s protective effect. Salivary pH Although resting and stimulated salivary pH is easily and accurately measured chairside with the use of pH sensitive test strips, there is not a direct correlation between salivary pH and caries susceptibility.18 Salivary pH always follows the rate of secretion; therefore, it is lowest at night and in the morning.17 The normal range is between 5 and 8.17 Salivary pH assessment should not be used to predict caries susceptibility, but rather as a teaching 66 | rdhmag.com Salivary buffer capacity is defined as the quantitative measure of resistance to pH changes.17, 18 The buffering capacity of saliva is one of the best indicators of caries susceptibility, because it is indicative of the individual’s response to acid challenge within the oral cavity.18 According to Larmas (1992), “Low salivary buffer capacity is indicative of reduced host response to cariogenic bacteria, reduced salivary flow rate, possible malnutrition, or pregnancy” (p. 205).21 The Dentobuff Strip (Orion Diagnostica, Espoo, Finland) is a chairside salivary buffer capacity test that consists of pH indicator paper that has been impregnated with acid. Results of the test are then compared to a chart. Other chairside salivary buffer capacity tests are available (Fig. 1). Measuring biofilm activity Another type of testing involves biofilm activity level measured by adenosine triphosphate (ATP) bioluminescence. ATP bioluminescence is a technology that has been used for years to test bacterial activity in places such as food manufacturing facilities and wastewater treatment plants.18 ATP bioluminescence can assess an individual’s risk for caries by measuring the overall level and activity of cariogenic bacteria.18 ATP bioluminescence is a simple chairside test that involves swabbing a specific site on teeth and then a 15-second measurement with a meter. An example of an ATP bioluminescence test is the CariScreen caries susceptibility test (Oral BioTech, Albany, Ore.) Salivary tests for caries susceptibility can aid in educating patients, motivating patient compliance, determining effectiveness of anti-caries therapy or furthering caries-control measures, and setting frequency of dental checkups. SALIVA TESTING FOR PERIODONTAL DISEASE One of the leading causes of tooth loss in adults is periodontal disease, affect- ing more than 50% of the U.S. population.22 The traditional method to diagnose periodontal disease relies on measuring pocket depth and clinical attachment loss, and evaluating radiographs for bone loss. These assessments do not predict periodontal disease in its earliest state.7 Since periodontal disease is an irreversible disease, early diagnosis is imperative. Furthermore, it has been shown that untreated periodontal disease can lead to systemic disorders such as cardiovascular disease and diabetes.22 Researchers have been investigating ways to detect periodontal disease in its preclinical phase using genetic, microbial, and protein biomarkers.22 Since the early 1990s, much research was generated to learn about biomarkers of periodontal disease. 5 Gingival crevicular fluid (GCF) became an early medium to examine for biomarkers due to its location within the sulcus and easy accessibility. Chapple (2009) states the advantages of using GCF: “The biomarkers found in GCF indicate the presence or absence of periodontal pathogens, gingival and periodontal inflammation, the host inflammatory-immune response to certain pathogenic species, and host tissue destruction” (p. 9-10). The disadvantages of using GCF is that it is expensive, time-consuming, requires multiple samples of individual tooth sites, and requires laboratory processing.5 Saliva is more readily available and easier to collect than is GCF. Saliva contains a plethora of biomarkers for periodontal disease, including GCF, and has emerged as the medium of choice to test for periodontal disease. 5 OralDNA Labs (Brentwood, Tenn.) offer two salivary tests that evaluate for periodontal disease. MyPerioPath is a DNA test that uses saliva to determine an individual’s risk for periodontal disease by identifying the specific bacterial pathogens (microbial biomarkers) associated with the disease. MyPerioID uses saliva to determine a patient’s genetic susceptibility for periodontal disease by testing for a genetic biomarker. It is believed that 30% of the population carries this genetic RDH | October 2013 C H A I R S I D E S A L I VA R Y D I A G N O S T I C S F O R O R A L D I S E A S E S variation23 (see chart). While both tests provide useful information regarding an individual’s risk for periodontal disease, they require the use of a laboratory. However, POC tests are under development. Significant advances are in development for the screening of periodontal disease. Researchers have reported that high levels of the inflammatory biomarker C-reactive protein (CRP) have been associated with chronic and aggressive periodontal disease.10 Researchers at Rice University in Houston, Tex., are developing a lab-on-a-chip system, which will help quantify the difference in CRP levels between healthy individuals and patients with periodontal disease.10 This detection system is called an electronic taste chip (ETC).10 In addition to the device’s ability to measure CRP, the ETC will simultaneously monitor several additional biomarkers for periodontal disease.10 The University of Michigan in collaboration with the NIDCR has developed a rapid POC device, known as an integrated microfluidic platform for oral diagnostics (IMPOD).10, 12 This handheld, pocket-sized test determines the amount of the enzyme matrix metalloproteinase-8 (MMP-8) in saliva, in less than 10 minutes.10, 12 Herr states (2007), “MMP-8 has been identified as a major tissue destructive enzyme in periodontal disease. Consequently, MMP8 is a promising candidate for diagnosing and possibly more importantly, assessing the progression of periodontal disease”12 (p. 5268). It is clear that individual susceptibility, along with a variety of local and systemic conditions can influence the initiation and progression of periodontal disease.24 Therefore, it is important that advances in diagnostic testing are made to help identify early periodontal risk. The use of saliva-based diagnostics appears promising for future application to diagnose periodontal disease and to predict periodontal treatment outcomes. In the near future, clinicians will be able to assess periodontal disease with a rapid chairside saliva test.25 68 | rdhmag.com CHAIR SIDE SALIVARY TESTS Fig. 1 Salivary tests for Dental Caries Susceptibility PRODUCT COMPANY AVAILABILITY PURPOSE Denticult ® SM Orion Diagnostica, Espoo, Finland Measures levels of SM Yes Denticult ® LB Orion Diagnostica, Espoo, Finland Measures levels of LB Yes Ivoclar CRT® Bacteria Ivoclar Vivadent, Amherst, NY Quantifies the levels of both MS & LB Yes Saliva-Check SM GC America Inc. Measure levels of SM Yes Dentobuff ® Strip Orion Diagnostica, Espoo, Finland Tests salivary buffering capacity Yes Ivoclar CRT® Buffer Ivoclar Vivadent, Amherst, NY Tests salivary buffering capacity Yes Saliva Check Buffer GC America Inc. In Vitro Test for checking the quality, pH and buffering capacity of saliva Yes CariScreen Oral Biotech, Albany OR Measures biofilm activity Yes Fig. 2 Salivary Tests for Periodontal Disease My PerioID Oral DNA Labs, Brentwood, Tenn. Identifies the type and concentration of specific bacteria that cause periodontal disease Yes My PerioPath Oral DNA Labs, Brentwood, Tenn. Determines genetic susceptibility to periodontal disease Yes Electronic Taste Chips (ETC) Rice University, Houston, Tex Detects multiple biomarkers, including CRP for periodontal disease No Integrated Microfluidic Platform for Oral Diagnostics (IMPOD) University of Michigan Rapidly measures concentrations of MMP-8 and other salivary biomarkers for periodontal disease No Fig. 3 Salivary Test for Oral Cancer Oral Fluid Nano Sensor Test (OFNASET) University of California, Los Angeles Point-of-care detection of multiple salivary proteins and RNA markers for oral cancer No RDH | October 2013 C H A I R S I D E S A L I VA R Y D I A G N O S T I C S F O R O R A L D I S E A S E S SALIVA TESTING FOR ORAL SQUAMOUS CELL CARCINOMA Oral squamous cell carcinoma (OSCC) is the most common malignancy of the oral cavity among oral cancers, accounting for more than 90% of clinical cases and ranking among the top 10 types of cancers worldwide.9 The occurrence of OSCC has been increasing in frequency among individuals.26 The survival rate of oral cancer is 60-80% when detected during its early stages; however, this number drops to 3040% when the cancer is diagnosed during the advanced stages.8 Due to the lack of a reliable early-stage diagnostic marker for OSCC, most OSCC cases are diagnosed when the cancer has developed well into the advanced stages.8 Moreover, because OSCC has a very high recurrence rate, early identification and detection is critical for patient survival.8 Saliva is now being considered as a diagnostic medium for OSCC. One benefit o ...
Purchase answer to see full attachment

Tutor Answer

TutorStewartbrian
School: Carnegie Mellon University

Attached.

Salivary Testing
Student’s name
Institutional Affiliation

Salivary testing
➢ Just like blood, saliva can be used as a diagnostic tool by clinicians in various health
centers.

➢ Needless to mention, the aforementioned diagnostic tool contains a variety of enzymes
like cytokines, antibodies, hormones, and antimicrobial constituents (Vogell, n.d.).

➢ As such, clinicians and medics can use...

flag Report DMCA
Review

Anonymous
I was on a very tight deadline but thanks to Studypool I was able to deliver my assignment on time.

Anonymous
The tutor was pretty knowledgeable, efficient and polite. Great service!

Anonymous
I did not know how to approach this question, Studypool helped me a lot.

Studypool
4.7
Trustpilot
4.5
Sitejabber
4.4

Brown University





1271 Tutors

California Institute of Technology




2131 Tutors

Carnegie Mellon University




982 Tutors

Columbia University





1256 Tutors

Dartmouth University





2113 Tutors

Emory University





2279 Tutors

Harvard University





599 Tutors

Massachusetts Institute of Technology



2319 Tutors

New York University





1645 Tutors

Notre Dam University





1911 Tutors

Oklahoma University





2122 Tutors

Pennsylvania State University





932 Tutors

Princeton University





1211 Tutors

Stanford University





983 Tutors

University of California





1282 Tutors

Oxford University





123 Tutors

Yale University





2325 Tutors