A force of 5 pounds stretches
Anonymous

Question Description

A force of 5 pounds stretches a spring 1 foot. A mass weighing 6.4 pounds is attached to the spring, and the system is then immersed in a medium that offers a damping force numerically equal to 1.6 times the instantaneous velocity.

I calculated that the equation of motion if the mass is initially released from rest from a point 1 foot above the equilibrium position is : x(t) = e^(-4t) [-cos(3t) - 4/3sin(3t)]

Please help me find the equation of motion in the form x(t) = Ae^(??t) sin(sqrt(?^2 - ?^2) + phi)

-When i tried getting this i got A =4/3, w^2 = 25, lambda = 16, pheta = arctan(3/4)

Find the first time at which the mass passes through the equilibrium position heading upward

_________________S

Please help me find the equation of motion in the form x(t) = Ae^(??t) sin(sqrt(?^2 - ?^2) + phi)

x(t) = _____________________


Final Answer

khakaan (1456)
University of Virginia

Anonymous
Top quality work from this tutor! I’ll be back!

Anonymous
It’s my second time using SP and the work has been great back to back :) The one and only resource on the Interwebs for the work that needs to be done!

Anonymous
Thanks, good work

Studypool
4.7
Trustpilot
4.5
Sitejabber
4.4

Brown University





1271 Tutors

California Institute of Technology




2131 Tutors

Carnegie Mellon University




982 Tutors

Columbia University





1256 Tutors

Dartmouth University





2113 Tutors

Emory University





2279 Tutors

Harvard University





599 Tutors

Massachusetts Institute of Technology



2319 Tutors

New York University





1645 Tutors

Notre Dam University





1911 Tutors

Oklahoma University





2122 Tutors

Pennsylvania State University





932 Tutors

Princeton University





1211 Tutors

Stanford University





983 Tutors

University of California





1282 Tutors

Oxford University





123 Tutors

Yale University





2325 Tutors