Atlanta College of Art Heating of Surface Waters Questions

User Generated

jl1091196943

Science

Atlanta College of Art

Question Description

Help me study for my Environmental Science class. I’m stuck and don’t understand.

Questions

1. When the compensation point is defined where net photosynthesis is zero, and for a particular algal population the compensation depth was determined to be 1% of surface light, what is the maximum depth available for growth in both lakes?

2. Which wavelengths are most important for the heating of surface waters?

3. Why do clean, clear lakes appear blue in color?Why do aquatic plants appear green?

4. What accounts for any observed differences in your graphs for 3b and 3c?

Unformatted Attachment Preview

Depth (m) Neutral filter 0 100 0,1 94,05 1 73,81 2 50,00 3 33,04 4 25,00 5 17,86 6 13,10 7 9,82 8 5,33 9 4,02 10 2,83 11 1,96 12 1,19 13 0,52 14 0,33 15 0,22 16 0,15 17 0,10 18 0,07 19 0,05 20 0,04 21 0,03 22 0,02 23 0,01 AVG K 0,30 0,35 0,37 0,35 0,34 0,34 0,33 0,37 0,36 0,36 0,36 0,37 0,40 0,41 0,41 0,41 0,41 0,40 0,40 0,39 0,39 0,39 0,40 0,37 blue filter (460-500 nm) 100 94,74 70,53 55,79 44,21 35,79 28,42 19,37 14,21 10,16 6,84 4,84 3,47 1,84 1,16 0,74 0,47 0,33 0,21 0,15 0,12 0,09 0,02 0,01 0,00 K 0,35 0,29 0,27 0,26 0,25 0,27 0,28 0,29 0,30 0,30 0,31 0,33 0,34 0,35 0,36 0,36 0,36 0,36 0,35 0,35 0,41 0,42 0,33 green filter (500-580 nm) 100 87,32 63,38 53,52 32,25 27,46 22,68 18,73 13,24 7,75 5,92 3,66 1,72 1,11 0,63 0,44 0,24 0,17 0,13 0,08 0,02 0,00 0,00 0,00 0,00 K 0,46 0,31 0,38 0,32 0,30 0,28 0,29 0,32 0,31 0,33 0,37 0,38 0,39 0,39 0,40 0,40 0,39 0,40 0,45 0,36 yellow filter (580-590 nm) 100 88,42 50,00 35,26 19,74 16,58 12,37 7,89 6,58 5,39 3,95 2,32 1,56 1,00 0,66 0,42 0,21 0,14 0,10 0,07 0,05 0,04 0,02 0,01 0,00 0 0 5 10 15 20 40 60 20 25 0 5 10 15 20 25 0,01 0,1 1 K 0,69 0,52 0,54 0,45 0,42 0,42 0,39 0,37 0,36 0,38 0,38 0,38 0,39 0,39 0,41 0,41 0,41 0,40 0,40 0,39 0,41 0,42 0,42 red filter (640-720 nm) 100 87,50 60,00 35,50 22,50 15,00 8,75 6,15 4,50 3,55 2,50 1,60 0,70 0,44 0,26 0,17 0,12 0,08 0,06 0,04 0,03 0,01 0,00 0,00 0,00 K 0,51 0,52 0,50 0,47 0,49 0,46 0,44 0,42 0,41 0,41 0,45 0,45 0,46 0,46 0,45 0,45 0,44 0,43 0,43 0,46 0,46 80 100 120 Neutral Blue Green Yellow Red Neutral Blue Green Yellow Red 10 100 9-Apr 9-Apr 9-Apr 23-Apr 23-Apr 23-Apr 7-May 7-May 7-May 21-May 21-May 21-May 4-Jun 4-Jun Depth Temp Incident Reflected Temp Incident Reflected Temp Incident Reflected Temp Incident Reflected Temp Incident 0 4,9 100 100 10,9 100 100 12,2 100 100 16,9 100 100 20,8 100 1 4,9 28,2 75 10,9 32,2 65,6 12,1 35,2 12,1 16,9 31,4 9,4 20,5 35,3 2 4,9 16,8 42 10,8 25,6 56,1 12 20,9 9,3 15,2 22,1 7,1 19,6 23,5 3 4,9 10,5 31 10,8 18,9 43,9 11,9 15,4 5,9 13,1 18,4 4,8 17,4 15,3 4 4,9 6,6 20,5 10,8 13,3 32,2 11,8 13,6 3,8 12,7 13,5 3,5 14,9 13,8 5 4,9 3,5 13,5 10,7 8,9 22,2 11,1 10,1 2,4 12,2 9,8 2,3 13,1 8,9 6 4,9 2,6 8,8 9,4 6,1 13,3 9,8 7,3 1,8 12 6,5 1,8 12,1 6 7 4,9 1,8 5 7,8 4,4 7,8 8,7 4,5 1,4 10,5 5,1 1,2 10,8 4,6 8 4,9 1,2 3 6,9 3,2 5 7,4 3 1 8,3 3,4 0,9 8,7 2,9 9 4,9 0,8 2 6,1 2,3 3,3 6,3 2,1 0,7 7,1 2,4 0,7 7 2,1 10 4,9 0,5 1,3 5,2 1,6 2,8 5,7 1,4 0,6 6,2 1,7 0,6 6,2 1,5 11 4,9 0,3 0,8 4,9 1,1 2,2 5,1 1,2 0,5 5,8 1,3 0,6 5,9 1,2 12 4,8 0,2 0,3 4,8 0,7 1,7 5 1 0,5 5,5 1 0,6 5,5 0,9 Temperature 0 5 10 Incident Light 15 20 25 0 0 0 2 4 4 23-Apr 7-May 6 21-May 8 4-Jun Depth Depth 2 9-Apr 6 8 10 10 12 12 14 14 Reflected Light 0 0 20 40 60 80 100 120 20 40 60 80 100 0 20 40 60 80 100 120 0 2 Depth 4 6 9-Apr 23-Apr 7-May 21-May 8 10 12 14 4-Jun 4-Jun Reflected 100 16,3 11,7 8,3 5,4 3 2,4 1,8 1,2 0,8 0,7 0,7 0,7 120 9-Apr 23-Apr 7-May 21-May 4-Jun Depth (m) Neutral filter 0 100 0.1 94.05 1 73.81 2 50.00 3 33.04 4 25.00 5 17.86 6 13.10 7 9.82 8 5.33 9 4.02 10 2.83 11 1.96 12 1.19 13 0.52 14 0.33 15 0.22 16 0.15 17 0.10 18 0.07 19 0.05 20 0.04 21 0.03 22 0.02 23 0.01 AVG K 0.30 0.35 0.37 0.35 0.34 0.34 0.33 0.37 0.36 0.36 0.36 0.37 0.40 0.41 0.41 0.41 0.41 0.40 0.40 0.39 0.39 0.39 0.40 0.37 blue filter (460-500 nm) 100 94.74 70.53 55.79 44.21 35.79 28.42 19.37 14.21 10.16 6.84 4.84 3.47 1.84 1.16 0.74 0.47 0.33 0.21 0.15 0.12 0.09 0.02 0.01 0.00 K 0.35 0.29 0.27 0.26 0.25 0.27 0.28 0.29 0.30 0.30 0.31 0.33 0.34 0.35 0.36 0.36 0.36 0.36 0.35 0.35 0.41 0.42 0.33 green filter (500-580 nm) 100 87.32 63.38 53.52 32.25 27.46 22.68 18.73 13.24 7.75 5.92 3.66 1.72 1.11 0.63 0.44 0.24 0.17 0.13 0.08 0.02 0.00 0.00 0.00 0.00 K 0.46 0.31 0.38 0.32 0.30 0.28 0.29 0.32 0.31 0.33 0.37 0.38 0.39 0.39 0.40 0.40 0.39 0.40 0.45 0.36 yellow filter (580-590 nm) 100 88.42 50.00 35.26 19.74 16.58 12.37 7.89 6.58 5.39 3.95 2.32 1.56 1.00 0.66 0.42 0.21 0.14 0.10 0.07 0.05 0.04 0.02 0.01 0.00 0 0 5 10 15 20 40 60 20 25 0 5 10 15 20 25 0.01 0.1 1 K 0.69 0.52 0.54 0.45 0.42 0.42 0.39 0.37 0.36 0.38 0.38 0.38 0.39 0.39 0.41 0.41 0.41 0.40 0.40 0.39 0.41 0.42 0.42 red filter (640-720 nm) 100 87.50 60.00 35.50 22.50 15.00 8.75 6.15 4.50 3.55 2.50 1.60 0.70 0.44 0.26 0.17 0.12 0.08 0.06 0.04 0.03 0.01 0.00 0.00 0.00 K 0.51 0.52 0.50 0.47 0.49 0.46 0.44 0.42 0.41 0.41 0.45 0.45 0.46 0.46 0.45 0.45 0.44 0.43 0.43 0.46 0.46 80 100 120 Neutral Blue Green Yellow Red Neutral Blue Green Yellow Red 10 100 9-Apr 9-Apr 9-Apr 23-Apr 23-Apr 23-Apr 7-May 7-May 7-May 21-May 21-May 21-May 4-Jun 4-Jun Depth Temp Incident Reflected Temp Incident Reflected Temp Incident Reflected Temp Incident Reflected Temp Incident 0 4.9 100 100 10.9 100 100 12.2 100 100 16.9 100 100 20.8 100 1 4.9 28.2 75 10.9 32.2 65.6 12.1 35.2 12.1 16.9 31.4 9.4 20.5 35.3 2 4.9 16.8 42 10.8 25.6 56.1 12 20.9 9.3 15.2 22.1 7.1 19.6 23.5 3 4.9 10.5 31 10.8 18.9 43.9 11.9 15.4 5.9 13.1 18.4 4.8 17.4 15.3 4 4.9 6.6 20.5 10.8 13.3 32.2 11.8 13.6 3.8 12.7 13.5 3.5 14.9 13.8 5 4.9 3.5 13.5 10.7 8.9 22.2 11.1 10.1 2.4 12.2 9.8 2.3 13.1 8.9 6 4.9 2.6 8.8 9.4 6.1 13.3 9.8 7.3 1.8 12 6.5 1.8 12.1 6 7 4.9 1.8 5 7.8 4.4 7.8 8.7 4.5 1.4 10.5 5.1 1.2 10.8 4.6 8 4.9 1.2 3 6.9 3.2 5 7.4 3 1 8.3 3.4 0.9 8.7 2.9 9 4.9 0.8 2 6.1 2.3 3.3 6.3 2.1 0.7 7.1 2.4 0.7 7 2.1 10 4.9 0.5 1.3 5.2 1.6 2.8 5.7 1.4 0.6 6.2 1.7 0.6 6.2 1.5 11 4.9 0.3 0.8 4.9 1.1 2.2 5.1 1.2 0.5 5.8 1.3 0.6 5.9 1.2 12 4.8 0.2 0.3 4.8 0.7 1.7 5 1 0.5 5.5 1 0.6 5.5 0.9 Temperature 0 5 10 Incident Light 15 20 25 0 0 0 2 4 4 23-Apr 7-May 6 21-May 8 4-Jun Depth Depth 2 9-Apr 6 8 10 10 12 12 14 14 Reflected Light 0 0 20 40 60 80 100 120 20 40 60 80 100 0 20 40 60 80 100 120 0 2 Depth 4 6 9-Apr 23-Apr 7-May 21-May 8 10 12 14 4-Jun 4-Jun Reflected 100 16.3 11.7 8.3 5.4 3 2.4 1.8 1.2 0.8 0.7 0.7 0.7 120 9-Apr 23-Apr 7-May 21-May 4-Jun BIO L413 – LIMNOLOGY LAB Lab 2a. Light and temperature. In this lab we will plot the percentage transmission of underwater light versus depth for total light and for different colors of light. We will also calculate the mean absorption coefficients of total light and the different colors of light. We will then plot temperature versus depth profiles from data provided and then plot depth-time diagrams for temperature and light. Underwater Irradiance As solar radiation penetrates the water, portions are absorbed by the water itself and by dissolved and suspended materials. A significant portion is also scattered, deflected by the molecular components of water, its solutes, and suspended particulates. The extent of scattering varies with the composition, quantity, and relative transparency of suspended materials. Therefore it is anticipated that inorganic and organic suspended materials and sediments will influence the scattering of light. Light attenuation is the reduction of radiant energy with depth by both scattering and absorption mechanisms. The measurement of transmission or absorption of light in water can be made in several ways. The percentage absorption through a given depth of water may be expressed in percent according to the relationship developed by Birge: 100(𝐼𝑜 − 𝐼𝑧 ) 𝐼𝑜 Where Io = irradiance at the surface, Iz = irradiance at depth z, usually taken at 1m intervals below Io. The percentile absorption of pure water is very high in the infrared portion of the spectrum and results in rapid heating of the water by incident light. About 53% of total light energy is transformed into heat in the first meter of water. Absorption by pure water decreases markedly in the short wavelengths to a minimum absorption in the blue and increases again in the violet and UV spectral wavelengths. (Fig. 1). Solar irradiance Iz at depth z is a function of the intensity at the surface, Io, multiplied by the antilog of the negative extinction coefficient (k) at depth z in meters as given by the following equations Figure 1. Transmission of light by distilled water at six wavelengths. Percentage of incident light remaining expressed in linear (upper) and logarithmic (lower) scales. From Wetzel and Likens. Iz = Ioe-kz -orlnIo – lnIz = kz Although the extinction coefficient (k) theoretically is constant for a given wavelength in water, in nature underwater irradiance is a composite of many wavelengths. Therefore the relationship is imperfect under natural conditions and represents a composite for multichromatic light and the various characteristics of water that affect absorption and scattering. The total extinction coefficient (kt) is a composite of absorption of the water itself (kw), by particles suspended in the water (kp), and dissolved compounds or ‘colors’ (kc). kt = kw + kp + kc Laboratory exercise: 1. Using the data provided (Gull Lake), calculate the extinction coefficients and determine the mean extinction coefficient (all depth intervals below 1m) for total light and that for light absorption with blue, green, yellow, and red filters. 2. Using Gull Lake data, graph the vertical profiles of spectral attenuation as a percentage of surface irradiance (0m = 100%) vs. depth using a) a linear scale and b) a log scale. 3. Using Lawrence Lake data, graph vertical depth profiles for a. Temperature b. Underwater incident light c. Underwater scattered light For your data in #3 plot the different dates on the same graph, thus for temperature you’ll have 5 lines, for the incidental light graph you’ll have 5 lines, and for the scattered light graph you’ll have 5 lines. Questions 1. When the compensation point is defined where net photosynthesis is zero, and for a particular algal population the compensation depth was determined to be 1% of surface light, what is the maximum depth available for growth in both lakes? 2. Which wavelengths are most important for the heating of surface waters? 3. Why do clean, clear lakes appear blue in color? Why do aquatic plants appear green? 4. What accounts for any observed differences in your graphs for 3b and 3c?
Purchase answer to see full attachment
Explanation & Answer:
4 Questions
Student has agreed that all tutoring, explanations, and answers provided by the tutor will be used to help in the learning process and in accordance with Studypool's honor code & terms of service.

Explanation & Answer

Attached.

Running head: LIMNOLOGY PAPER DISCUSSION

1

Limnology Paper Discussion
Institution affiliation
Professor
Name
Date

LIMNOLOGY PAPER DISCUSSION

2

When the compensation point is defined where net photosynthesis is zero, and for a
particular algal population the compensation depth was determined to be 1% of
surface?

Light compensation occurs when in plant growth is always reached during awe
hours, that is, during evenings and mornings. That is when the most plants do not use the
little light available, but some plants will have their guard cells activated at the slightest
provocation by light wavelengths. The maximum depth for growth of both lakes is 0-2
meters for both lakes. At this depth, the 1% light action is high and most of reflection in
response to the incident ray is ideal. At these depths, the rate of photosynthesis is high
and the plants can take maximum light. According to Young (2018), the phenomenon can
be explained by the principle and ability of light travel. In bodies of water, light traveling
decrease as depth increase. As depth increase, the power of light to penetrate goes down,
to a point when it is difficult to get to the...

Nhqlghgbe92 (5680)
Cornell University

Anonymous
This is great! Exactly what I wanted.

Studypool
4.7
Trustpilot
4.5
Sitejabber
4.4

Related Tags