University of New Haven Cryptography & Operation Security Hash Values Paper

User Generated

mzna2712

Computer Science

University of New Haven

Description

Write a  paper on how one can use hash values to log into a system, crack a network, etc.

Be sure to explain how hash values are used and misused in a system. 


Unformatted Attachment Preview

Cryptography and Network Security: Principles and Practice Seventh Edition Chapter 11 Cryptographic Hash Functions Copyright © 2017 Pearson Education, Inc. All Rights Reserved Hash Functions • A hash function H accepts a variable-length block of data M as input and produces a fixed-size hash value – h = H ( M) – Principal object is data integrity • Cryptographic hash function – An algorithm for which it is computationally infeasible to find either: (a) a data object that maps to a pre-specified hash result (the one-way property) (b) two data objects that map to the same hash result (the collision-free property) Copyright © 2017 Pearson Education, Inc. All Rights Reserved Figure 11.1 Cryptographic Hash Function h = uppercase h left parenthesis m right parenthesis Copyright © 2017 Pearson Education, Inc. All Rights Reserved Figure 11.2 Attack Against Hash Function Copyright © 2017 Pearson Education, Inc. All Rights Reserved Figure 11.3 Simplified Examples of the Use of a Hash Function for Message Authentication Copyright © 2017 Pearson Education, Inc. All Rights Reserved Message Authentication Code (MAC) • Also known as a keyed hash function • Typically used between two parties that share a secret key to authenticate information exchanged between those parties • Takes as input a secret key and a data block and produces a hash value (MAC) which is associated with the protected message – If the integrity of the message needs to be checked, the M AC function can be applied to the message and the result compared with the associated MAC value – An attacker who alters the message will be unable to alter the associated MAC value without knowledge of the secret key Copyright © 2017 Pearson Education, Inc. All Rights Reserved Digital Signature • Operation is similar to that of the MAC • The hash value of a message is encrypted with a user’s private key • Anyone who knows the user’s public key can verify the integrity of the message • An attacker who wishes to alter the message would need to know the user’s private key • Implications of digital signatures go beyond just message authentication Copyright © 2017 Pearson Education, Inc. All Rights Reserved Figure 11.4 Simplified Examples of Digital Signatures Copyright © 2017 Pearson Education, Inc. All Rights Reserved Other Hash Function Uses (1 of 2) • Commonly used to create a one-way password file – When a user enters a password, the hash of that password is compared to the stored hash value for verification – This approach to password protection is used by most operating systems • Can be used for intrusion and virus detection – Store H(F) for each file on a system and secure the hash values Copyright © 2017 Pearson Education, Inc. All Rights Reserved Other Hash Function Uses (2 of 2) – One can later determine if a file has been modified by H(F) re recomputing – An intruder would need to change F without changing H(F) • Can be used to construct a pseudorandom function (PR F) or a pseudorandom number generator (PRNG) – A common application for a hash-based PRF is for the generation of symmetric keys Copyright © 2017 Pearson Education, Inc. All Rights Reserved Two Simple Hash Functions (1 of 2) • Consider two simple insecure hash functions that operate using the following general principles: – The input is viewed as a sequence of n-bit blocks – The input is processed one block at a time in an iterative fashion to produce an n-bit hash function • Bit-by-bit exclusive-OR (XOR) of every block − Ci = bi1xor bi 2 xor . . . xor bim – Produces a simple parity for each bit position and is known as a longitudinal redundancy check Copyright © 2017 Pearson Education, Inc. All Rights Reserved Two Simple Hash Functions (2 of 2) – Reasonably effective for random data as a data integrity check • Perform a one-bit circular shift on the hash value after each block is processed – Has the effect of randomizing the input more completely and overcoming any regularities that appear in the input Copyright © 2017 Pearson Education, Inc. All Rights Reserved Figure 11.5 Two Simple Hash Functions Copyright © 2017 Pearson Education, Inc. All Rights Reserved Requirements and Security Preimage Collision x is the preimage of h for a Occurs if we have hash value h = H ( x ) x  y and H ( x ) = H ( y ) Is a data block whose hash function, using the function H, is h Because we are using hash functions for data integrity, collisions are clearly undesirable Because H is a many-toone mapping, for any given hash value h, there will in general be multiple preimages Copyright © 2017 Pearson Education, Inc. All Rights Reserved Table 11.1 Requirements for a Cryptographic Hash Function H Requirement Description Variable input size H can be applied to a block of data of any size. Fixed output Size H produces a fixed-length output. Efficiency H ( x ) is relatively easy to compute for any given x. making both hardware and software implementations practical. Preimage resistant (one-way property) For any given hash value h. it is computationally infeasible to find y such that H ( y ) = h. Second preimage resistant (weak collision resistant) For any given block x, it is computationally infeasible to find y  x with H( y ) = H( x). Collision resistant (strong collision resistant) It is computationally infeasible to find any pair ( x. y ) such that H ( x ) H ( y ) . Pseudo randomness Output of H meets standard tests for Pseudo randomness Copyright © 2017 Pearson Education, Inc. All Rights Reserved Figure 11.6 Relationship Among Hash Function Properties Copyright © 2017 Pearson Education, Inc. All Rights Reserved Table 11.2 Hash Function Resistance Properties Required for Various Data Integrity Applications Blank Preimage Resistant Second Preimage Resistant Collision Resistant Hash + digital Signature Yes Yes Yes* Intrusion Detection and virus detection Blank Yes Blank Hash + symmetric Blank encryption Blank Blank One-way password file Yes Blank Blank MAC Yes Yes Yes* * Resistance required if attacker is able to mount a chosen message attack Copyright © 2017 Pearson Education, Inc. All Rights Reserved Attacks on Hash Functions Brute-Force Attacks Cryptanalysis Does not depend on the specific algorithm, only depends on bit length An attack based on weaknesses in a particular cryptographic algorithm In the case of a hash function, attack depends only on the bit length of the hash value Seek to exploit some property of the algorithm to perform some attack other than an exhaustive search Method is to pick values at Blank random and try each one until a collision occurs Copyright © 2017 Pearson Education, Inc. All Rights Reserved Collision Resistant Attacks (1 of 3) • For a collision resistant attack, an adversary wishes to find two messages or data blocks that yield the same hash function – The effort required is explained by a mathematical result referred to as the birthday paradox • Yuval proposed the following strategy to exploit the birthday paradox in a collision resistant attack: – The source (A) is prepared to sign a legitimate message x by appending the appropriate m-bit hash code and encrypting that hash code with A’s private key Copyright © 2017 Pearson Education, Inc. All Rights Reserved Collision Resistant Attacks (2 of 3) – Opponent generates 2m/2 variations x’ of x, all with essentially the same meaning, and stores the messages and their hash values – Opponent prepares a fraudulent message y for which A’s signature is desired – Opponent generates minor variations y’ of y, all of which convey essentially the same meaning. For each y’, the opponent computes H (y’), checks for matches with any of the H (x’) values, and continues until a match is found. That is, the process continues until a y’ is generated with a hash value equal to the hash value of one of the x’ values Copyright © 2017 Pearson Education, Inc. All Rights Reserved Collision Resistant Attacks (3 of 3) – The opponent offers the valid variation to A for signature which can then be attached to the fraudulent variation for transmission to the intended recipient ▪ Because the two variations have the same hash code, they will produce the same signature and the opponent is assured of success even though the encryption key is not known Copyright © 2017 Pearson Education, Inc. All Rights Reserved Figure 11.7 A Letter in 2 to the twenty eighth power Variation (Letter is located on page 334 in textbook) Copyright © 2017 Pearson Education, Inc. All Rights Reserved Figure 11.8 General Structure of Secure Hash Code Copyright © 2017 Pearson Education, Inc. All Rights Reserved Hash Functions Based on Cipher Block Chaining (1 of 3) • A number of proposals have been made for hash functions based on using a cipher block chaining technique, but without using the secret key • One of the first proposals was that of Rabin – Divide a message M into fixed-size blocks M1 , M 2 , . . . , M N and use a symmetric encryption system such as DES to compute the hash code G as H 0 = initial value H i = E(M i , H i−1 ) G = HN Copyright © 2017 Pearson Education, Inc. All Rights Reserved Hash Functions Based on Cipher Block Chaining (2 of 3) – Similar to the CBC technique, but in this case, there is no secret key – As with any hash code, this scheme is subject to the birthday attack – If the encryption algorithm is DES and only a 64-bit hash code is produced, the system is vulnerable • Meet-in-the-middle-attack – Another version of the birthday attack used even if the opponent has access to only one message and its valid signature and cannot obtain multiple signings Copyright © 2017 Pearson Education, Inc. All Rights Reserved Hash Functions Based on Cipher Block Chaining (3 of 3) • It can be shown that some form of birthday attack will succeed against any hash scheme involving the use of cipher block chaining without a secret key, provided that either the resulting hash code is small enough or that a larger hash code can be decomposed into independent sub codes Copyright © 2017 Pearson Education, Inc. All Rights Reserved Secure Hash Algorithm (SHA) • SHA was originally designed by the National Institute of Standards and Technology (NIST) and published as a federal information processing standard (FIPS 180) in 1993 • Was revised in 1995 as SHA-1 • Based on the hash function MD4 and its design closely models MD4 • Produces 160-bit hash values • In 2002 NIST produced a revised version of the standard that defined three new versions of SHA with hash value lengths of 256, 384, and 512 – Collectively known as SHA-2 Copyright © 2017 Pearson Education, Inc. All Rights Reserved Table 11.3 Comparison of SHA Parameters Algorithm Message Size Block Size Word Size Message Digest Size SHA-1  264  264  264 512 32 160 512 32 224 512 32 256  2128  2128 1024 64 384 1024 64 512 SHA512/224  2128 1024 64 224 SHA512/256  2128 1024 64 256 SHA-224 SHA-256 SHA-384 SHA-512 Note: All sizes are measured in bits. Copyright © 2017 Pearson Education, Inc. All Rights Reserved Figure 11.9 Message Digest Generation Using SHA-512 Copyright © 2017 Pearson Education, Inc. All Rights Reserved Figure 11.10 SHA-512 Processing of a Single 1024-Bit Block Copyright © 2017 Pearson Education, Inc. All Rights Reserved Table 11.4 SHA-512 Constants (Table can be found on page 341 in textbook) Copyright © 2017 Pearson Education, Inc. All Rights Reserved Figure 11.11 Elementary SHA-512 Operation (Single Round) Copyright © 2017 Pearson Education, Inc. All Rights Reserved Figure 11.12 Creation of 80-Word Input Sequence for SHA-512 Processing of Single Block Copyright © 2017 Pearson Education, Inc. All Rights Reserved Figure 11.13 SHA-512 Logic (Figure can be found on page 345 in textbook) Copyright © 2017 Pearson Education, Inc. All Rights Reserved SHA-3 Copyright © 2017 Pearson Education, Inc. All Rights Reserved The Sponge Construction • Underlying structure of SHA-3 is a scheme referred to by its designers as a sponge construction • Takes an input message and partitions it into fixed-size blocks • Each block is processed in turn with the output of each iteration fed into the next iteration, finally producing an output block • The sponge function is defined by three parameters: – f = the internal function used to process each input block – r = the size in bits of the input blocks, called the bitrate – pad = the padding algorithm Copyright © 2017 Pearson Education, Inc. All Rights Reserved Figure 11.14 Sponge Function Input and Output Copyright © 2017 Pearson Education, Inc. All Rights Reserved Figure 11.15 Sponge Construction Copyright © 2017 Pearson Education, Inc. All Rights Reserved Table 11.5 SHA-3 Parameters Message Digest Size 224 256 384 512 No maximum No maximum No maximum No maximum Block Size (bitrate r) 1152 1088 832 576 Word Size 64 64 64 64 Number of Rounds 24 24 24 24 Capacity c 448 512 768 1024 Collision Resistance  2112  2128  2192  2256 Second Preimage Resistance  2224  2256  2384  2512 Message Size Copyright © 2017 Pearson Education, Inc. All Rights Reserved Figure 11.16 SHA-3 State Matrix Copyright © 2017 Pearson Education, Inc. All Rights Reserved Figure 11.17 SHA-3 Iteration Function f Copyright © 2017 Pearson Education, Inc. All Rights Reserved Table 11.6 Step Functions in SHA-3 Function Type Description  Substitution New value Of each bit in each word depends its current value and on one bit in each word of preceding column and one bit of each word in succeeding column.  Permutation The bits of each word are permuted using a circular bit shift. w[0,0] is not affected.  Permutation Words are permuted in the 5x5 matrix. w[0,0] not affected.  Substitution New value of each bit in each word depends on its current value and on one bit in next word in the same row and one bit in the second next word in the same row.  Substitution w[0,0] is updated by XOR with a round constant. Copyright © 2017 Pearson Education, Inc. All Rights Reserved Figure 11.18 Theta and Chi Step Functions Copyright © 2017 Pearson Education, Inc. All Rights Reserved Figure 11.19 Pi Step Function Copyright © 2017 Pearson Education, Inc. All Rights Reserved Table 11.8 Round Constants in SHA-3 (1 of 2) Round Constant (hexadecimal) Number of 1 bits 0 0000000000000001 1 1 0000000000008082 3 2 800000000000808A 5 3 8000000080008000 3 4 000000000000808B 5 5 0000000080000001 2 6 8000000080008081 5 7 8000000000008009 4 8 000000000000008A 3 9 0000000000000088 2 10 0000000080008009 4 11 000000008000000A 3 Copyright © 2017 Pearson Education, Inc. All Rights Reserved Table 11.8 Round Constants in SHA-3 (2 of 2) Round Constant (hexadecimal) Number of 1 bits 12 000000008000808B 6 13 800000000000008B 5 14 8000000000008089 5 15 8000000000008003 4 16 8000000000008002 3 17 8000000000000080 2 18 000000000000800A 3 19 800000008000000A 4 20 8000000080008081 5 21 8000000000008080 3 22 0000000080000001 2 23 8000000080008008 4 Copyright © 2017 Pearson Education, Inc. All Rights Reserved Summary • Applications of cryptographic hash functions – Message authentication – Digital signatures – Other applications • Hash functions based on cipher block chaining • Requirements and security – Security requirements for cryptographic hash functions – Brute-force attacks – Cryptanalysis • SHA-3 – The sponge construction – The SHA-3 Iteration Function f • Secure hash algorithm (SHA) – SHA-512 logic – SHA-512 round function Copyright © 2017 Pearson Education, Inc. All Rights Reserved Copyright Copyright © 2017 Pearson Education, Inc. All Rights Reserved CRYPTOGRAPHY AND NETWORK SECURITY PRINCIPLES AND PRACTICE SEVENTH EDITION GLOBAL EDITION William Stallings Boston Columbus Indianapolis New York San Francisco Hoboken Amsterdam Cape Town Dubai London Madrid Milan Munich Paris Montréal Toronto Delhi Mexico City São Paulo Sydney Hong Kong Seoul Singapore Taipei Tokyo Hiva-Network.Com For Tricia: never dull, never boring, the smartest and bravest person I know Vice President and Editorial Director, ECS: Marcia J. Horton Executive Editor: Tracy Johnson (Dunkelberger) Editorial Assistant: Kristy Alaura Acquisitions Editor, Global Editions: Abhijit Baroi Program Manager: Carole Snyder Project Manager: Robert Engelhardt Project Editor, Global Editions: K.K. Neelakantan Media Team Lead: Steve Wright R&P Manager: Rachel Youdelman R&P Senior Project Manager: William Opaluch Senior Operations Specialist: Maura Zaldivar-Garcia Inventory Manager: Meredith Maresca Inventory Manager: Meredith Maresca Senior Manufacturing Controller, Global Editions: Trudy Kimber Media Production Manager, Global Editions: Vikram Kumar Product Marketing Manager: Bram Van Kempen Marketing Assistant: Jon Bryant Cover Designer: Lumina Datamatics Cover Art: © goghy73 / Shutterstock Full-Service Project Management: Chandrakala Prakash, SPi Global Composition: SPi Global Credits and acknowledgments borrowed from other sources and reproduced, with permission, in this textbook appear on page 753. Pearson Education Limited Edinburgh Gate Harlow Essex CM20 2JE England and Associated Companies throughout the world Visit us on the World Wide Web at: www.pearsonglobaleditions.com © Pearson Education Limited 2017 The right of William Stallings to be identified as the author of this work has been asserted by him in accordance with the Copyright, Designs and Patents Act 1988. Authorized adaptation from the United States edition, entitled Cryptography and Network Security: Principles and Practice, 7th Edition, ISBN 978-0-13-444428-4, by William Stallings published by Pearson Education © 2017. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without either the prior written permission of the publisher or a license permitting restricted copying in the United Kingdom issued by the Copyright Licensing Agency Ltd, Saffron House, 6–10 Kirby Street, London EC1N 8TS. All trademarks used herein are the property of their respective owners. The use of any trademark in this text does not vest in the author or publisher any trademark ownership rights in such trademarks, nor does the use of such trademarks imply any affiliation with or endorsement of this book by such owners. British Library Cataloguing-in-Publication Data A catalogue record for this book is available from the British Library 10 9 8 7 6 5 4 3 2 1 ISBN 10:1-292-15858-1 ISBN 13: 978-1-292-15858-7 Typeset by SPi Global Printed and bound in Malaysia. CONTENTS Notation 10 Preface 12 About the Author 18 PART ONE: BACKGROUND 19 Chapter 1 Computer and Network Security Concepts 19 1.1 Computer Security Concepts 21 1.2 The OSI Security Architecture 26 1.3 Security Attacks 27 1.4 Security Services 29 1.5 Security Mechanisms 32 1.6 Fundamental Security Design Principles 34 1.7 Attack Surfaces and Attack Trees 37 1.8 A Model for Network Security 41 1.9 Standards 43 1.10 Key Terms, Review Questions, and Problems 44 Chapter 2 Introduction to Number Theory 46 2.1 Divisibility and the Division Algorithm 47 2.2 The Euclidean Algorithm 49 2.3 Modular Arithmetic 53 2.4 Prime Numbers 61 2.5 Fermat’s and Euler’s Theorems 64 2.6 Testing for Primality 68 2.7 The Chinese Remainder Theorem 71 2.8 Discrete Logarithms 73 2.9 Key Terms, Review Questions, and Problems 78 Appendix 2A The Meaning of Mod 82 PART TWO: SYMMETRIC CIPHERS 85 Chapter 3 Classical Encryption Techniques 85 3.1 Symmetric Cipher Model 86 3.2 Substitution Techniques 92 3.3 Transposition Techniques 107 3.4 Rotor Machines 108 3.5 Steganography 110 3.6 Key Terms, Review Questions, and Problems 112 Chapter 4 Block Ciphers and the Data Encryption Standard 118 4.1 Traditional Block Cipher Structure 119 4.2 The Data Encryption Standard 129 4.3 A DES Example 131 4.4 The Strength of DES 134 3 4 CONTENTS 4.5 Block Cipher Design Principles 135 4.6 Key Terms, Review Questions, and Problems 137 Chapter 5 Finite Fields 141 5.1 Groups 143 5.2 Rings 145 5.3 Fields 146 5.4 Finite Fields of the Form GF(p) 147 5.5 Polynomial Arithmetic 151 5.6 Finite Fields of the Form GF(2n) 157 5.7 Key Terms, Review Questions, and Problems 169 Chapter 6 Advanced Encryption Standard 171 6.1 Finite Field Arithmetic 172 6.2 AES Structure 174 6.3 AES Transformation Functions 179 6.4 AES Key Expansion 190 6.5 An AES Example 193 6.6 AES Implementation 197 6.7 Key Terms, Review Questions, and Problems 202 Appendix 6A Polynomials with Coefficients in GF(28) 203 Chapter 7 Block Cipher Operation 207 7.1 Multiple Encryption and Triple DES 208 7.2 Electronic Codebook 213 7.3 Cipher Block Chaining Mode 216 7.4 Cipher Feedback Mode 218 7.5 Output Feedback Mode 220 7.6 Counter Mode 222 7.7 XTS-AES Mode for Block-Oriented Storage Devices 224 7.8 Format-Preserving Encryption 231 7.9 Key Terms, Review Questions, and Problems 245 Chapter 8 Random Bit Generation and Stream Ciphers 250 8.1 Principles of Pseudorandom Number Generation 252 8.2 Pseudorandom Number Generators 258 8.3 Pseudorandom Number Generation Using a Block Cipher 261 8.4 Stream Ciphers 267 8.5 RC4 269 8.6 True Random Number Generators 271 8.7 Key Terms, Review Questions, and Problems 280 PART THREE: ASYMMETRIC CIPHERS 283 Chapter 9 Public-Key Cryptography and RSA 283 9.1 Principles of Public-Key Cryptosystems 285 9.2 The RSA Algorithm 294 9.3 Key Terms, Review Questions, and Problems 308 CONTENTS Chapter 10 Other Public-Key Cryptosystems 313 10.1 Diffie-Hellman Key Exchange 314 10.2 Elgamal Cryptographic System 318 10.3 Elliptic Curve Arithmetic 321 10.4 Elliptic Curve Cryptography 330 10.5 Pseudorandom Number Generation Based on an Asymmetric Cipher 334 10.6 Key Terms, Review Questions, and Problems 336 PART FOUR: CRYPTOGRAPHIC DATA INTEGRITY ALGORITHMS 339 Chapter 11 Cryptographic Hash Functions 339 11.1 Applications of Cryptographic Hash Functions 341 11.2 Two Simple Hash Functions 346 11.3 Requirements and Security 348 11.4 Hash Functions Based on Cipher Block Chaining 354 11.5 Secure Hash Algorithm (SHA) 355 11.6 SHA-3 365 11.7 Key Terms, Review Questions, and Problems 377 Chapter 12 Message Authentication Codes 381 12.1 Message Authentication Requirements 382 12.2 Message Authentication Functions 383 12.3 Requirements for Message Authentication Codes 391 12.4 Security of MACs 393 12.5 MACs Based on Hash Functions: HMAC 394 12.6 MACs Based on Block Ciphers: DAA and CMAC 399 12.7 Authenticated Encryption: CCM and GCM 402 12.8 Key Wrapping 408 12.9 Pseudorandom Number Generation Using Hash Functions and MACs 413 12.10 Key Terms, Review Questions, and Problems 416 Chapter 13 Digital Signatures 419 13.1 Digital Signatures 421 13.2 Elgamal Digital Signature Scheme 424 13.3 Schnorr Digital Signature Scheme 425 13.4 NIST Digital Signature Algorithm 426 13.5 Elliptic Curve Digital Signature Algorithm 430 13.6 RSA-PSS Digital Signature Algorithm 433 13.7 Key Terms, Review Questions, and Problems 438 PART FIVE: MUTUAL TRUST 441 Chapter 14 Key Management and Distribution 441 14.1 Symmetric Key Distribution Using Symmetric Encryption 442 14.2 Symmetric Key Distribution Using Asymmetric Encryption 451 Distribution of Public Keys 454 14.3 14.4 X.509 Certificates 459 5 6 CONTENTS 14.5 Public-Key Infrastructure 467 14.6 Key Terms, Review Questions, and Problems 469 Chapter 15 User Authentication 473 15.1 Remote User-Authentication Principles 474 15.2 Remote User-Authentication Using Symmetric Encryption 478 15.3 Kerberos 482 15.4 Remote User-Authentication Using Asymmetric Encryption 500 15.5 Federated Identity Management 502 15.6 Personal Identity Verification 508 15.7 Key Terms, Review Questions, and Problems 515 PART SIX: NETWORK AND INTERNET SECURITY 519 Chapter 16 Network Access Control and Cloud Security 519 16.1 Network Access Control 520 16.2 Extensible Authentication Protocol 523 16.3 IEEE 802.1X Port-Based Network Access Control 527 16.4 Cloud Computing 529 16.5 Cloud Security Risks and Countermeasures 535 16.6 Data Protection in the Cloud 537 16.7 Cloud Security as a Service 541 16.8 Addressing Cloud Computing Security Concerns 544 16.9 Key Terms, Review Questions, and Problems 545 Chapter 17 Transport-Level Security 546 17.1 Web Security Considerations 547 17.2 Transport Layer Security 549 17.3 HTTPS 566 17.4 Secure Shell (SSH) 567 17.5 Key Terms, Review Questions, and Problems 579 Chapter 18 Wireless Network Security 581 18.1 Wireless Security 582 18.2 Mobile Device Security 585 18.3 IEEE 802.11 Wireless LAN Overview 589 18.4 IEEE 802.11i Wireless LAN Security 595 18.5 Key Terms, Review Questions, and Problems 610 Chapter 19 Electronic Mail Security 612 19.1 Internet Mail Architecture 613 19.2 Email Formats 617 19.3 Email Threats and Comprehensive Email Security 625 19.4 S/MIME 627 19.5 Pretty Good Privacy 638 19.6 DNSSEC 639 19.7 DNS-Based Authentication of Named Entities 643 19.8 Sender Policy Framework 645 19.9 DomainKeys Identified Mail 648 CONTENTS 19.10 19.11 Chapter 20 20.1 20.2 20.3 20.4 20.5 20.6 20.7 Domain-Based Message Authentication, Reporting, and Conformance 654 Key Terms, Review Questions, and Problems 659 IP Security 661 IP Security Overview 662 IP Security Policy 668 Encapsulating Security Payload 673 Combining Security Associations 681 Internet Key Exchange 684 Cryptographic Suites 692 Key Terms, Review Questions, and Problems 694 APPENDICES 696 Appendix A Projects for Teaching Cryptography and Network Security 696 A.1 Sage Computer Algebra Projects 697 A.2 Hacking Project 698 A.3 Block Cipher Projects 699 A.4 Laboratory Exercises 699 A.5 Research Projects 699 A.6 Programming Projects 700 A.7 Practical Security Assessments 700 A.8 Firewall Projects 701 A.9 Case Studies 701 A.10 Writing Assignments 701 A.11 Reading/Report Assignments 702 A.12 Discussion Topics 702 Appendix B Sage Examples 703 B.1 B.2 B.3 B.4 B.5 B.6 B.7 B.8 B.9 B.10 B.11 References Credits 753 Index 754 Linear Algebra and Matrix Functionality 704 Chapter 2: Number Theory 705 Chapter 3: Classical Encryption 710 Chapter 4: Block Ciphers and the Data Encryption Standard 713 Chapter 5: Basic Concepts in Number Theory and Finite Fields 717 Chapter 6: Advanced Encryption Standard 724 Chapter 8: Pseudorandom Number Generation and Stream Ciphers 729 Chapter 9: Public-Key Cryptography and RSA 731 Chapter 10: Other Public-Key Cryptosystems 734 Chapter 11: Cryptographic Hash Functions 739 Chapter 13: Digital Signatures 741 744 7 8 CONTENTS ONLINE CHAPTERS AND APPENDICES1 PART SEVEN: SYSTEM SECURITY Chapter 21 Malicious Software 21.1 Types of Malicious Software (Malware) 21.2 Advanced Persistent Threat 21.3 Propagation—Infected Content—Viruses 21.4 Propagation—Vulnerability Exploit—Worms 21.5 Propagation—Social Engineering—Spam E-mail, Trojans 21.6 Payload—System Corruption 21.7 Payload—Attack Agent—Zombie, Bots 21.8 Payload—Information Theft—Keyloggers, Phishing, Spyware 21.9 Payload—Stealthing—Backdoors, Rootkits 21.10 Countermeasures 21.11 Distributed Denial of Service Attacks 21.12 References 21.13 Key Terms, Review Questions, and Problems Chapter 22 Intruders 22.1 Intruders 22.2 Intrusion Detection 22.3 Password Management 22.4 References 22.5 Key Terms, Review Questions, and Problems Chapter 23 Firewalls 23.1 The Need for Firewalls 23.2 Firewall Characteristics and Access Policy 23.3 Types of Firewalls 23.4 Firewall Basing 23.5 Firewall Location and Configurations 23.6 References 23.7 Key Terms, Review Questions, and Problems PART EIGHT: LEGAL AND ETHICAL ISSUES Chapter 24 Legal and Ethical Aspects 24.1 Cybercrime and Computer Crime 24.2 Intellectual Property 24.3 Privacy 24.4 Ethical Issues 24.5 Recommended Reading 24.6 References 24.7 Key Terms, Review Questions, and Problems 24.A Information Privacy 1 Online chapters, appendices, and other documents are at the Companion Website, available via the access card at the front of this book. CONTENTS Appendix C Sage Exercises Appendix D Standards and Standard-Setting Organizations Appendix E Basic Concepts from Linear Algebra Appendix F Measures of Secrecy and Security Appendix G Simplified DES Appendix H Evaluation Criteria for AES Appendix I Simplified AES Appendix J The Knapsack Algorithm Appendix K Proof of the Digital Signature Algorithm Appendix L TCP/IP and OSI Appendix M Java Cryptographic APIs Appendix N MD5 Hash Function Appendix O Data Compression Using ZIP Appendix P PGP Appendix Q The International Reference Alphabet Appendix R Proof of the RSA Algorithm Appendix S Data Encryption Standard Appendix T Kerberos Encryption Techniques Appendix U Mathematical Basis of the Birthday Attack Appendix V Evaluation Criteria for SHA-3 Appendix W The Complexity of Algorithms Appendix X Radix-64 Conversion Appendix Y The Base Rate Fallacy Glossary 9 NOTATION Symbol Expression Meaning D, K D(K, Y) Symmetric decryption of ciphertext Y using secret key K D, PRa D(PRa, Y) Asymmetric decryption of ciphertext Y using A’s private key PRa D, PUa D(PUa, Y) Asymmetric decryption of ciphertext Y using A’s public key PUa E, K E(K, X) Symmetric encryption of plaintext X using secret key K E, PRa E(PRa, X) Asymmetric encryption of plaintext X using A’s private key PRa E, PUa E(PUa, X) Asymmetric encryption of plaintext X using A’s public key PUa K Secret key PRa Private key of user A PUa Public key of user A MAC, K MAC(K, X) Message authentication code of message X using secret key K GF(p) The finite field of order p, where p is prime.The field is defined as the set Zp together with the arithmetic operations modulo p. GF(2n) The finite field of order 2n Zn Set of nonnegative integers less than n gcd gcd(i, j) Greatest common divisor; the largest positive integer that divides both i and j with no remainder on division. mod a mod m Remainder after division of a by m mod, K a K b (mod m) a mod m = b mod m mod, [ a [ b (mod m) a mod m ≠ b mod m dlog dlog a,p(b) Discrete logarithm of the number b for the base a (mod p) w f(n) The number of positive integers less than n and relatively prime to n. This is Euler’s totient function. Σ Π n a ai a1 + a2 + g + an i=1 n q ai a1 * a2 * g * an i=1  i j i divides j, which means that there is no remainder when j is divided by i ,   a Absolute value of a 10 Hiva-Network.Com NOTATION Symbol Expression Meaning } x}y x concatenated with y ≈ x ≈ y x is approximately equal to y ⊕ x⊕y Exclusive-OR of x and y for single-bit variables; Bitwise exclusive-OR of x and y for multiple-bit variables :, ; :x ; The largest integer less than or equal to x ∈ x∈S The element x is contained in the set S. · A · (a1, a2, c ak) The integer A corresponds to the sequence of integers (a1, a2, c ak) 11 PREFACE WHAT’S NEW IN THE SEVENTH EDITION In the four years since the sixth edition of this book was published, the field has seen continued innovations and improvements. In this new edition, I try to capture these changes while maintaining a broad and comprehensive coverage of the entire field. To begin this process of revision, the sixth edition of this book was extensively reviewed by a number of professors who teach the subject and by professionals working in the field. The result is that, in many places, the narrative has been clarified and tightened, and illustrations have been improved. Beyond these refinements to improve pedagogy and user-friendliness, there have been substantive changes throughout the book. Roughly the same chapter organization has been retained, but much of the material has been revised and new material has been added. The most noteworthy changes are as follows: ■ Fundamental security design principles: Chapter 1 includes a new section discussing the security design principles listed as fundamental by the National Centers of Academic Excellence in Information Assurance/Cyber Defense, which is jointly sponsored by the U.S. National Security Agency and the U.S. Department of Homeland Security. ■ Attack surfaces and attack trees: Chapter 1 includes a new section describing these two concepts, which are useful in evaluating and classifying security threats. Number theory coverage: The material on number theory has been consolidated into a single chapter, Chapter 2. This makes for a convenient reference. The relevant portions of Chapter 2 can be assigned as needed. Finite fields: The chapter on finite fields has been revised and expanded with additional text and new figures to enhance understanding. Format-preserving encryption: This relatively new mode of encryption is enjoying increasing commercial success. A new section in Chapter 7 covers this method. Conditioning and health testing for true random number generators: Chapter 8 now provides coverage of these important topics. User authentication model: Chapter 15 includes a new description of a general model for user authentication, which helps to unify the discussion of the various approaches to user authentication. Cloud security: The material on cloud security in Chapter 16 has been updated and expanded to reflect its importance and recent developments. Transport Layer Security (TLS): The treatment of TLS in Chapter 17 has been updated, reorganized to improve clarity, and now includes a discussion of the new TLS version 1.3. Email Security: Chapter 19 has been completely rewritten to provide a comprehensive and up-to-date discussion of email security. It includes: — New: discussion of email threats and a comprehensive approach to email security. — New: discussion of STARTTLS, which provides confidentiality and authentication for SMTP. ■ ■ ■ ■ ■ ■ ■ ■ 12 PREFACE 13 — Revised: treatment of S/MIME has been updated to reflect the latest version 3.2. — New: discussion of DNSSEC and its role in supporting email security. — New: discussion of DNS-based Authentication of Named Entities (DANE) and the use of this approach to enhance security for certificate use in SMTP and S/MIME. — New: discussion of Sender Policy Framework (SPF), which is the standardized way for a sending domain to identify and assert the mail senders for a given domain. — Revised: discussion of DomainKeys Identified Mail (DKIM) has been revised. — New: discussion of Domain-based Message Authentication, Reporting, and Conformance (DMARC) allows email senders to specify policy on how their mail should be handled, the types of reports that receivers can send back, and the frequency those reports should be sent. OBJECTIVES It is the purpose of this book to provide a practical survey of both the principles and practice of cryptography and network security. In the first part of the book, the basic issues to be addressed by a network security capability are explored by providing a tutorial and survey of cryptography and network security technology. The latter part of the book deals with the practice of network security: practical applications that have been implemented and are in use to provide network security. The subject, and therefore this book, draws on a variety of disciplines. In particular, it is impossible to appreciate the significance of some of the techniques discussed in this book without a basic understanding of number theory and some results from probability theory. Nevertheless, an attempt has been made to make the book self-contained. The book not only presents the basic mathematical results that are needed but provides the reader with an intuitive understanding of those results. Such background material is introduced as needed. This approach helps to motivate the material that is introduced, and the author considers this preferable to simply presenting all of the mathematical material in a lump at the beginning of the book. SUPPORT OF ACM/IEEE COMPUTER SCIENCE CURRICULA 2013 The book is intended for both academic and professional audiences. As a textbook, it is intended as a one-semester undergraduate course in cryptography and network security for computer science, computer engineering, and electrical engineering majors. The changes to this edition are intended to provide support of the ACM/IEEE Computer Science Curricula 2013 (CS2013). CS2013 adds Information Assurance and Security (IAS) to the curriculum recommendation as one of the Knowledge Areas in the Computer Science Body of Knowledge. The document states that IAS is now part of the curriculum recommendation because of the critical role of IAS in computer science education. CS2013 divides all course work into three categories: Core-Tier 1 (all topics should be included in the curriculum), Core-Tier-2 (all or almost all topics should be included), and elective (desirable to provide breadth and depth). In the IAS area, CS2013 recommends topics in Fundamental Concepts and Network Security 14 PREFACE in Tier 1 and Tier 2, and Cryptography topics as elective. This text covers virtually all of the topics listed by CS2013 in these three categories. The book also serves as a basic reference volume and is suitable for self-study. PLAN OF THE TEXT The book is divided into eight parts. ■ ■ ■ ■ ■ ■ ■ ■ Background Symmetric Ciphers Asymmetric Ciphers Cryptographic Data Integrity Algorithms Mutual Trust Network and Internet Security System Security Legal and Ethical Issues The book includes a number of pedagogic features, including the use of the computer algebra system Sage and numerous figures and tables to clarify the discussions. Each chapter includes a list of key words, review questions, homework problems, and suggestions for further reading. The book also includes an extensive glossary, a list of frequently used acronyms, and a bibliography. In addition, a test bank is available to instructors. INSTRUCTOR SUPPORT MATERIALS The major goal of this text is to make it as effective a teaching tool for this exciting and fast-moving subject as possible. This goal is reflected both in the structure of the book and in the supporting material. The text is accompanied by the following supplementary material that will aid the instructor: ■ Solutions manual: Solutions to all end-of-chapter Review Questions and Problems. ■ Projects manual: Suggested project assignments for all of the project categories listed below. PowerPoint slides: A set of slides covering all chapters, suitable for use in lecturing. PDF files: Reproductions of all figures and tables from the book. Test bank: A chapter-by-chapter set of questions with a separate file of answers. ■ ■ ■ ■ Sample syllabuses: The text contains more material than can be conveniently covered in one semester. Accordingly, instructors are provided with several sample syllabuses that guide the use of the text within limited time. All of these support materials are available at the Instructor Resource Center (IRC) for this textbook, which can be reached through the publisher’s Web site www.pearsonglobaleditions.com/stallings. To gain access to the IRC, please contact your local Pearson sales representative. PREFACE 15 PROJECTS AND OTHER STUDENT EXERCISES For many instructors, an important component of a cryptography or network security course is a project or set of projects by which the student gets hands-on experience to reinforce concepts from the text. This book provides an unparalleled degree of support, including a projects component in the course. The IRC not only includes guidance on how to assign and structure the projects, but also includes a set of project assignments that covers a broad range of topics from the text: ■ Sage projects: Described in the next section. ■ Hacking project: Exercise designed to illuminate the key issues in intrusion detection and prevention. Block cipher projects: A lab that explores the operation of the AES encryption algorithm by tracing its execution, computing one round by hand, and then exploring the various block cipher modes of use. The lab also covers DES. In both cases, an online Java applet is used (or can be downloaded) to execute AES or DES. Lab exercises: A series of projects that involve programming and experimenting with concepts from the book. Research projects: A series of research assignments that instruct the student to research a particular topic on the Internet and write a report. Programming projects: A series of programming projects that cover a broad range of topics and that can be implemented in any suitable language on any platform. Practical security assessments: A set of exercises to examine current infrastructure and practices of an existing organization. Firewall projects: A portable network firewall visualization simulator, together with exercises for teaching the fundamentals of firewalls. Case studies: A set of real-world case studies, including learning objectives, case description, and a series of case discussion questions. Writing assignments: A set of suggested writing assignments, organized by chapter. Reading/report assignments: A list of papers in the literature—one for each chapter— that can be assigned for the student to read and then write a short report. ■ ■ ■ ■ ■ ■ ■ ■ ■ This diverse set of projects and other student exercises enables the instructor to use the book as one component in a rich and varied learning experience and to tailor a course plan to meet the specific needs of the instructor and students. See Appendix A in this book for details. THE SAGE COMPUTER ALGEBRA SYSTEM One of the most important features of this book is the use of Sage for cryptographic examples and homework assignments. Sage is an open-source, multiplatform, freeware package that implements a very powerful, flexible, and easily learned mathematics and computer algebra system. Unlike competing systems (such as Mathematica, Maple, and MATLAB), there are 16 PREFACE no licensing agreements or fees involved. Thus, Sage can be made available on computers and networks at school, and students can individually download the software to their own personal computers for use at home. Another advantage of using Sage is that students learn a powerful, flexible tool that can be used for virtually any mathematical application, not just cryptography. The use of Sage can make a significant difference to the teaching of the mathematics of cryptographic algorithms. This book provides a large number of examples of the use of Sage covering many cryptographic concepts in Appendix B, which is included in this book. Appendix C lists exercises in each of these topic areas to enable the student to gain hands-on experience with cryptographic algorithms. This appendix is available to instructors at the IRC for this book. Appendix C includes a section on how to download and get started with Sage, a section on programming with Sage, and exercises that can be assigned to students in the following categories: ■ Chapter 2—Number Theory and Finite Fields: Euclidean and extended Euclidean algorithms, polynomial arithmetic, GF(24), Euler’s Totient function, Miller–Rabin, factoring, modular exponentiation, discrete logarithm, and Chinese remainder theorem. ■ Chapter 3—Classical Encryption: Affine ciphers and the Hill cipher. Chapter 4—Block Ciphers and the Data Encryption Standard: Exercises based on SDES. Chapter 6—Advanced Encryption Standard: Exercises based on SAES. Chapter 8—Pseudorandom Number Generation and Stream Ciphers: Blum Blum Shub, linear congruential generator, and ANSI X9.17 PRNG. Chapter 9—Public-Key Cryptography and RSA: RSA encrypt/decrypt and signing. Chapter 10—Other Public-Key Cryptosystems: Diffie–Hellman, elliptic curve. Chapter 11—Cryptographic Hash Functions: Number-theoretic hash function. Chapter 13—Digital Signatures: DSA. ■ ■ ■ ■ ■ ■ ■ ONLINE DOCUMENTS FOR STUDENTS For this new edition, a tremendous amount of original supporting material for students has been made available online. Purchasing this textbook new also grants the reader six months of access to the Companion Website, which includes the following materials: ■ Online chapters: To limit the size and cost of the book, four chapters of the book are provided in PDF format. This includes three chapters on computer security and one on legal and ethical issues. The chapters are listed in this book’s table of contents. ■ Online appendices: There are numerous interesting topics that support material found in the text but whose inclusion is not warranted in the printed text. A total of 20 online appendices cover these topics for the interested student. The appendices are listed in this book’s table of contents. PREFACE ■ ■ ■ ■ 17 Homework problems and solutions: To aid the student in understanding the material, a separate set of homework problems with solutions are available. Key papers: A number of papers from the professional literature, many hard to find, are provided for further reading. Supporting documents: A variety of other useful documents are referenced in the text and provided online. Sage code: The Sage code from the examples in Appendix B is useful in case the student wants to play around with the examples. To access the Companion Website, follow the instructions for “digital resources for students” found in the front of this book. ACKNOWLEDGMENTS This new edition has benefited from review by a number of people who gave generously of their time and expertise. The following professors reviewed all or a large part of the manuscript: Hossein Beyzavi (Marymount University), Donald F. Costello (University of Nebraska–Lincoln), James Haralambides (Barry University), Anand Seetharam (California State University at Monterey Bay), Marius C. Silaghi (Florida Institute of Technology), Shambhu Upadhyaya (University at Buffalo), Zhengping Wu (California State University at San Bernardino), Liangliang Xiao (Frostburg State University), Seong-Moo (Sam) Yoo (The University of Alabama in Huntsville), and Hong Zhang (Armstrong State University). Thanks also to the people who provided detailed technical reviews of one or more chapters: Dino M. Amaral, Chris Andrew, Prof. (Dr). C. Annamalai, Andrew Bain, Riccardo Bernardini, Olivier Blazy, Zervopoulou Christina, Maria Christofi, Dhananjoy Dey, Mario Emmanuel, Mike Fikuart, Alexander Fries, Pierpaolo Giacomin, Pedro R. M. Inácio, Daniela Tamy Iwassa, Krzysztof Janowski, Sergey Katsev, Adnan Kilic, Rob Knox, Mina Pourdashty, Yuri Poeluev, Pritesh Prajapati, Venkatesh Ramamoorthy, Andrea Razzini, Rami Rosen, Javier Scodelaro, Jamshid Shokrollahi, Oscar So, and David Tillemans. In addition, I was fortunate to have reviews of individual topics by “subject-area gurus,” including Jesse Walker of Intel (Intel’s Digital Random Number Generator), Russ Housley of Vigil Security (key wrapping), Joan Daemen (AES), Edward F. Schaefer of Santa Clara University (Simplified AES), Tim Mathews, formerly of RSA Laboratories (S/MIME), Alfred Menezes of the University of Waterloo (elliptic curve cryptography), William Sutton, Editor/Publisher of The Cryptogram (classical encryption), Avi Rubin of Johns Hopkins University (number theory), Michael Markowitz of Information Security Corporation (SHA and DSS), Don Davis of IBM Internet Security Systems (Kerberos), Steve Kent of BBN Technologies (X.509), and Phil Zimmerman (PGP). Nikhil Bhargava (IIT Delhi) developed the set of online homework problems and solutions. Dan Shumow of Microsoft and the University of Washington developed all of the Sage examples and assignments in Appendices B and C. Professor Sreekanth Malladi of Dakota State University developed the hacking exercises. Lawrie Brown of the Australian Defence Force Academy provided the AES/DES block cipher projects and the security assessment assignments. 18 PREFACE Sanjay Rao and Ruben Torres of Purdue University developed the laboratory exercises that appear in the IRC. The following people contributed project assignments that appear in the instructor’s supplement: Henning Schulzrinne (Columbia University); Cetin Kaya Koc (Oregon State University); and David Balenson (Trusted Information Systems and George Washington University). Kim McLaughlin developed the test bank. Finally, I thank the many people responsible for the publication of this book, all of whom did their usual excellent job. This includes the staff at Pearson, particularly my editor Tracy Johnson, program manager Carole Snyder, and production manager Bob Engelhardt. Thanks also to the marketing and sales staffs at Pearson, without whose efforts this book would not be in front of you. ACKNOWLEDGMENTS FOR THE GLOBAL EDITION Pearson would like to thank and acknowledge Somitra Kumar Sanadhya (Indraprastha Institute of Information Technology Delhi), and Somanath Tripathy (Indian Institute of Technology Patna) for contributing to the Global Edition, and Anwitaman Datta (Nanyang Technological University Singapore), Atul Kahate (Pune University), Goutam Paul (Indian Statistical Institute Kolkata), and Khyat Sharma for reviewing the Global Edition. ABOUT THE AUTHOR Dr. William Stallings has authored 18 titles, and counting revised editions, over 40 books on computer security, computer networking, and computer architecture. His writings have appeared in numerous publications, including the Proceedings of the IEEE, ACM Computing Reviews, and Cryptologia. He has 13 times received the award for the best Computer Science textbook of the year from the Text and Academic Authors Association. In over 30 years in the field, he has been a technical contributor, technical manager, and an executive with several high-technology firms. He has designed and implemented both TCP/IP-based and OSI-based protocol suites on a variety of computers and operating systems, ranging from microcomputers to mainframes. As a consultant, he has advised government agencies, computer and software vendors, and major users on the design, selection, and use of networking software and products. He created and maintains the Computer Science Student Resource Site at ComputerScienceStudent.com. This site provides documents and links on a variety of subjects of general interest to computer science students (and professionals). He is a member of the editorial board of Cryptologia, a scholarly journal devoted to all aspects of cryptology. Dr. Stallings holds a PhD from MIT in computer science and a BS from Notre Dame in electrical engineering. PART ONE: BACKGROUND CHAPTER Computer and Network Security Concepts 1.1 Computer Security Concepts A Definition of Computer Security Examples The Challenges of Computer Security 1.2 The OSI Security Architecture 1.3 Security Attacks Passive Attacks Active Attacks 1.4 Security Services Authentication Access Control Data Confidentiality Data Integrity Nonrepudiation Availability Service 1.5 Security Mechanisms 1.6 Fundamental Security Design Principles 1.7 Attack Surfaces and Attack Trees Attack Surfaces Attack Trees 1.8 A Model for Network Security 1.9 Standards 1.10 Key Terms, Review Questions, and Problems 19 Hiva-Network.Com 20 CHAPTER 1 / COMPUTER AND NETWORK SECURITY CONCEPTS LEARNING OBJECTIVES After studying this chapter, you should be able to: ◆ Describe the key security requirements of confidentiality, integrity, and availability. ◆ Describe the X.800 security architecture for OSI. ◆ Discuss the types of security threats and attacks that must be dealt with and give examples of the types of threats and attacks that apply to different categories of computer and network assets. ◆ Explain the fundamental security design principles. ◆ Discuss the use of attack surfaces and attack trees. ◆ List and briefly describe key organizations involved in cryptography standards. This book focuses on two broad areas: cryptographic algorithms and protocols, which have a broad range of applications; and network and Internet security, which rely heavily on cryptographic techniques. Cryptographic algorithms and protocols can be grouped into four main areas: ■ ■ ■ ■ Symmetric encryption: Used to conceal the contents of blocks or streams of data of any size, including messages, files, encryption keys, and passwords. Asymmetric encryption: Used to conceal small blocks of data, such as encryption keys and hash function values, which are used in digital signatures. Data integrity algorithms: Used to protect blocks of data, such as messages, from alteration. Authentication protocols: These are schemes based on the use of cryptographic algorithms designed to authenticate the identity of entities. The field of network and Internet security consists of measures to deter, prevent, detect, and correct security violations that involve the transmission of information. That is a broad statement that covers a host of possibilities. To give you a feel for the areas covered in this book, consider the following examples of security violations: 1. User A transmits a file to user B. The file contains sensitive information (e.g., payroll records) that is to be protected from disclosure. User C, who is not authorized to read the file, is able to monitor the transmission and capture a copy of the file during its transmission. 2. A network manager, D, transmits a message to a computer, E, under its management. The message instructs computer E to update an authorization file to include the identities of a number of new users who are to be given access to that computer. User F intercepts the message, alters its contents to add or delete entries, and then forwards the message to computer E, which accepts the message as coming from manager D and updates its authorization file accordingly. 1.1 / COMPUTER SECURITY CONCEPTS 21 3. Rather than intercept a message, user F constructs its own message with the desired entries and transmits that message to computer E as if it had come from manager D. Computer E accepts the message as coming from manager D and updates its authorization file accordingly. 4. An employee is fired without warning. The personnel manager sends a message to a server system to invalidate the employee’s account. When the invalidation is accomplished, the server is to post a notice to the employee’s file as confirmation of the action. The employee is able to intercept the message and delay it long enough to make a final access to the server to retrieve sensitive information. The message is then forwarded, the action taken, and the confirmation posted. The employee’s action may go unnoticed for some considerable time. 5. A message is sent from a customer to a stockbroker with instructions for various transactions. Subsequently, the investments lose value and the customer denies sending the message. Although this list by no means exhausts the possible types of network security violations, it illustrates the range of concerns of network security. 1.1 COMPUTER SECURITY CONCEPTS A Definition of Computer Security The NIST Computer Security Handbook [NIST95] defines the term computer security as follows: Computer Security: The protection afforded to an automated information system in order to attain the applicable objectives of preserving the integrity, availability, and confidentiality of information system resources (includes hardware, software, firmware, information/data, and telecommunications). This definition introduces three key objectives that are at the heart of computer security: ■ Confidentiality: This term covers two related concepts: Data1 confidentiality: Assures that private or confidential information is not made available or disclosed to unauthorized individuals. Privacy: Assures that individuals control or influence what information related to them may be collected and stored and by whom and to whom that information may be disclosed. 1 RFC 4949 defines information as “facts and ideas, which can be represented (encoded) as various forms of data,” and data as “information in a specific physical representation, usually a sequence of symbols that have meaning; especially a representation of information that can be processed or produced by a computer.” Security literature typically does not make much of a distinction, nor does this book. CHAPTER 1 / COMPUTER AND NETWORK SECURITY CONCEPTS ■ Integrity: This term covers two related concepts: Data integrity: Assures that information (both stored and in transmitted packets) and programs are changed only in a specified and authorized manner. System integrity: Assures that a system performs its intended function in an unimpaired manner, free from deliberate or inadvertent unauthorized manipulation of the system. ■ Availability: Assures that systems work promptly and service is not denied to authorized users. These three concepts form what is often referred to as the CIA triad. The three concepts embody the fundamental security objectives for both data and for information and computing services. For example, the NIST standard FIPS 199 (Standards for Security Categorization of Federal Information and Information Systems) lists confidentiality, integrity, and availability as the three security objectives for information and for information systems. FIPS 199 provides a useful characterization of these three objectives in terms of requirements and the definition of a loss of security in each category: ■ ■ ■ Confidentiality: Preserving authorized restrictions on information access and disclosure, including means for protecting personal privacy and proprietary information. A loss of confidentiality is the unauthorized disclosure of information. Integrity: Guarding against improper information modification or destruction, including ensuring information nonrepudiation and authenticity. A loss of integrity is the unauthorized modification or destruction of information. Availability: Ensuring timely and reliable access to and use of information. A loss of availability is the disruption of access to or use of information or an information system. Although the use of the CIA triad to define security objectives is well established, some in the security field feel that additional concepts are needed to present a complete picture (Figure 1.1). Two of the most commonly mentioned are as follows: y lit ility b unta Acco Data and services In teg rit y ty nfi Co ntici tia n de Auth e 22 Availability Figure 1.1 Essential Network and Computer Security Requirements 1.1 / COMPUTER SECURITY CONCEPTS ■ ■ 23 Authenticity: The property of being genuine and being able to be verified and trusted; confidence in the validity of a transmission, a message, or message originator. This means verifying that users are who they say they are and that each input arriving at the system came from a trusted source. Accountability: The security goal that generates the requirement for actions of an entity to be traced uniquely to that entity. This supports nonrepudiation, deterrence, fault isolation, intrusion detection and prevention, and afteraction recovery and legal action. Because truly secure systems are not yet an achievable goal, we must be able to trace a security breach to a responsible party. Systems must keep records of their activities to permit later forensic analysis to trace security breaches or to aid in transaction disputes. Examples We now provide some examples of applications that illustrate the requirements just enumerated.2 For these examples, we use three levels of impact on organizations or individuals should there be a breach of security (i.e., a loss of confidentiality, integrity, or availability). These levels are defined in FIPS PUB 199: ■ ■ ■ 2 Low: The loss could be expected to have a limited adverse effect on organizational operations, organizational assets, or individuals. A limited adverse effect means that, for example, the loss of confidentiality, integrity, or availability might (i) cause a degradation in mission capability to an extent and duration that the organization is able to perform its primary functions, but the effectiveness of the functions is noticeably reduced; (ii) result in minor damage to organizational assets; (iii) result in minor financial loss; or (iv) result in minor harm to individuals. Moderate: The loss could be expected to have a serious adverse effect on organizational operations, organizational assets, or individuals. A serious adverse effect means that, for example, the loss might (i) cause a significant degradation in mission capability to an extent and duration that the organization is able to perform its primary functions, but the effectiveness of the functions is significantly reduced; (ii) result in significant damage to organizational assets; (iii) result in significant financial loss; or (iv) result in significant harm to individuals that does not involve loss of life or serious, life-threatening injuries. High: The loss could be expected to have a severe or catastrophic adverse effect on organizational operations, organizational assets, or individuals. A severe or catastrophic adverse effect means that, for example, the loss might (i) cause a severe degradation in or loss of mission capability to an extent and duration that the organization is not able to perform one or more of its primary functions; (ii) result in major damage to organizational assets; (iii) result in major financial loss; or (iv) result in severe or catastrophic harm to individuals involving loss of life or serious, life-threatening injuries. These examples are taken from a security policy document published by the Information Technology Security and Privacy Office at Purdue University. 24 CHAPTER 1 / COMPUTER AND NETWORK SECURITY CONCEPTS CONFIDENTIALITY Student grade information is an asset whose confidentiality is considered to be highly important by students. In the United States, the release of such information is regulated by the Family Educational Rights and Privacy Act (FERPA). Grade information should only be available to students, their parents, and employees that require the information to do their job. Student enrollment information may have a moderate confidentiality rating. While still covered by FERPA, this information is seen by more people on a daily basis, is less likely to be targeted than grade information, and results in less damage if disclosed. Directory information, such as lists of students or faculty or departmental lists, may be assigned a low confidentiality rating or indeed no rating. This information is typically freely available to the public and published on a school’s Web site. INTEGRITY Several aspects of integrity are illustrated by the example of a hospital patient’s allergy information stored in a database. The doctor should be able to trust that the information is correct and current. Now suppose that an employee (e.g., a nurse) who is authorized to view and update this information deliberately falsifies the data to cause harm to the hospital. The database needs to be restored to a trusted basis quickly, and it should be possible to trace the error back to the person responsible. Patient allergy information is an example of an asset with a high requirement for integrity. Inaccurate information could result in serious harm or death to a patient and expose the hospital to massive liability. An example of an asset that may be assigned a moderate level of integrity requirement is a Web site that offers a forum to registered users to discuss some specific topic. Either a registered user or a hacker could falsify some entries or deface the Web site. If the forum exists only for the enjoyment of the users, brings in little or no advertising revenue, and is not used for something important such as research, then potential damage is not severe. The Web master may experience some data, financial, and time loss. An example of a low integrity requirement is an anonymous online poll. Many Web sites, such as news organizations, offer these polls to their users with very few safeguards. However, the inaccuracy and unscientific nature of such polls is well understood. AVAILABILITY The more critical a component or service, the higher is the level of availability required. Consider a system that provides authentication services for critical systems, applications, and devices. An interruption of service results in the inability for customers to access computing resources and staff to access the resources they need to perform critical tasks. The loss of the service translates into a large financial loss in lost employee productivity and potential customer loss. An example of an asset that would typically be rated as having a moderate availability requirement is a public Web site for a university; the Web site provides information for current and prospective students and donors. Such a site is not a critical component of the university’s information system, but its unavailability will cause some embarrassment. An online telephone directory lookup application would be classified as a low availability requirement. Although the temporary loss of the application may be an annoyance, there are other ways to access the information, such as a hardcopy directory or the operator. 1.1 / COMPUTER SECURITY CONCEPTS 25 The Challenges of Computer Security Computer and network security is both fascinating and complex. Some of the reasons follow: 1. Security is not as simple as it might first appear to the novice. The requirements seem to be straightforward; indeed, most of the major requirements for security services can be given self-explanatory, one-word labels: confidentiality, authentication, nonrepudiation, or integrity. But the mechanisms used to meet those requirements can be quite complex, and understanding them may involve rather subtle reasoning. 2. In developing a particular security mechanism or algorithm, one must always consider potential attacks on those security features. In many cases, successful attacks are designed by looking at the problem in a completely different way, therefore exploiting an unexpected weakness in the mechanism. 3. Because of point 2, the procedures used to provide particular services are often counterintuitive. Typically, a security mechanism is complex, and it is not obvious from the statement of a particular requirement that such elaborate measures are needed. It is only when the various aspects of the threat are considered that elaborate security mechanisms make sense. 4. Having designed various security mechanisms, it is necessary to decide where to use them. This is true both in terms of physical placement (e.g., at what points in a network are certain security mechanisms needed) and in a logical sense (e.g., at what layer or layers of an architecture such as TCP/IP [Transmission Control Protocol/Internet Protocol] should mechanisms be placed). 5. Security mechanisms typically involve more than a particular algorithm or protocol. They also require that participants be in possession of some secret information (e.g., an encryption key), which raises questions about the creation, distribution, and protection of that secret information. There also may be a reliance on communications protocols whose behavior may complicate the task of developing the security mechanism. For example, if the proper functioning of the security mechanism requires setting time limits on the transit time of a message from sender to receiver, then any protocol or network that introduces variable, unpredictable delays may render such time limits meaningless. 6. Computer and network security is essentially a battle of wits between a perpetrator who tries to find holes and the designer or administrator who tries to close them. The great advantage that the attacker has is that he or she need only find a single weakness, while the designer must find and eliminate all weaknesses to achieve perfect security. 7. There is a natural tendency on the part of users and system managers to perceive little benefit from security investment until a security failure occurs. 8. Security requires regular, even constant, monitoring, and this is difficult in today’s short-term, overloaded environment. 9. Security is still too often an afterthought to be incorporated into a system after the design is complete rather than being an integral part of the design process. 26 CHAPTER 1 / COMPUTER AND NETWORK SECURITY CONCEPTS 10. Many users and even security administrators view strong security as an impediment to efficient and user-friendly operation of an information system or use of information. The difficulties just enumerated will be encountered in numerous ways as we examine the various security threats and mechanisms throughout this book. 1.2 THE OSI SECURITY ARCHITECTURE To assess effectively the security needs of an organization and to evaluate and choose various security products and policies, the manager responsible for security needs some systematic way of defining the requirements for security and characterizing the approaches to satisfying those requirements. This is difficult enough in a centralized data processing environment; with the use of local and wide area networks, the problems are compounded. ITU-T3 Recommendation X.800, Security Architecture for OSI, defines such a systematic approach.4 The OSI security architecture is useful to managers as a way of organizing the task of providing security. Furthermore, because this architecture was developed as an international standard, computer and communications vendors have developed security features for their products and services that relate to this structured definition of services and mechanisms. For our purposes, the OSI security architecture provides a useful, if abstract, overview of many of the concepts that this book deals with. The OSI security architecture focuses on security attacks, mechanisms, and services. These can be defined briefly as ■ ■ ■ Security attack: Any action that compromises the security of information owned by an organization. Security mechanism: A process (or a device incorporating such a process) that is designed to detect, prevent, or recover from a security attack. Security service: A processing or communication service that enhances the security of the data processing systems and the information transfers of an organization. The services are intended to counter security attacks, and they make use of one or more security mechanisms to provide the service. In the literature, the terms threat and attack are commonly used to mean more or less the same thing. Table 1.1 provides definitions taken from RFC 4949, Internet Security Glossary. 3 The International Telecommunication Union (ITU) Telecommunication Standardization Sector (ITU-T) is a United Nations-sponsored agency that develops standards, called Recommendations, relating to telecommunications and to open systems interconnection (OSI). 4 The OSI security architecture was developed in the context of the OSI protocol architecture, which is described in Appendix L. However, for our purposes in this chapter, an understanding of the OSI protocol architecture is not required. 1.3 / SECURITY ATTACKS 27 Table 1.1 Threats and Attacks (RFC 4949) Threat A potential for violation of security, which exists when there is a circumstance, capability, action, or event that could breach security and cause harm. That is, a threat is a possible danger that might exploit a vulnerability. Attack An assault on system security that derives from an intelligent threat; that is, an intelligent act that is a deliberate attempt (especially in the sense of a method or technique) to evade security services and violate the security policy of a system. 1.3 SECURITY ATTACKS A useful means of classifying security attacks, used both in X.800 and RFC 4949, is in terms of passive attacks and active attacks (Figure 1.2). A passive attack attempts to learn or make use of information from the system but does not affect system resources. An active attack attempts to alter system resources or affect their operation. Passive Attacks Passive attacks (Figure 1.2a) are in the nature of eavesdropping on, or monitoring of, transmissions. The goal of the opponent is to obtain information that is being transmitted. Two types of passive attacks are the release of message contents and traffic analysis. The release of message contents is easily understood. A telephone conversation, an electronic mail message, and a transferred file may contain sensitive or confidential information. We would like to prevent an opponent from learning the contents of these transmissions. A second type of passive attack, traffic analysis, is subtler. Suppose that we had a way of masking the contents of messages or other information traffic so that opponents, even if they captured the message, could not extract the information from the message. The common technique for masking contents is encryption. If we had encryption protection in place, an opponent might still be able to observe the pattern of these messages. The opponent could determine the location and identity of communicating hosts and could observe the frequency and length of messages being exchanged. This information might be useful in guessing the nature of the communication that was taking place. Passive attacks are very difficult to detect, because they do not involve any alteration of the data. Typically, the message traffic is sent and received in an apparently normal fashion, and neither the sender nor receiver is aware that a third party has read the messages or observed the traffic pattern. However, it is feasible to prevent the success of these attacks, usually by means of encryption. Thus, the emphasis in dealing with passive attacks is on prevention rather than detection. Active Attacks Active attacks (Figure 1.2b) involve some modification of the data stream or the creation of a false stream and can be subdivided into four categories: masquerade, replay, modification of messages, and denial of service. 28 CHAPTER 1 / COMPUTER AND NETWORK SECURITY CONCEPTS Darth Internet or other communications facility Bob Alice (a) Passive attacks Darth 1 2 3 Internet or other communications facility Alice Bob (b) Active attacks Figure 1.2 Security Attacks A masquerade takes place when one entity pretends to be a different entity (path 2 of Figure 1.2b is active). A masquerade attack usually includes one of the other forms of active attack. For example, authentication sequences can be captured and replayed after a valid authentication sequence has taken place, thus enabling an authorized entity with few privileges to obtain extra privileges by impersonating an entity that has those privileges. Replay involves the passive capture of a data unit and its subsequent retransmission to produce an unauthorized effect (paths 1, 2, and 3 active). Modification of messages simply means that some portion of a legitimate message is altered, or that messages are delayed or reordered, to produce an unauthorized effect (paths 1 and 2 active). For example, a message meaning “Allow John Smith to read confidential file accounts” is modified to mean “Allow Fred Brown to read confidential file accounts.” Hiva-Network.Com 1.4 / SECURITY SERVICES 29 The denial of service prevents or inhibits the normal use or management of communications facilities (path 3 active). This attack may have a specific target; for example, an entity may suppress all messages directed to a particular destination (e.g., the security audit service). Another form of service denial is the disruption of an entire network, either by disabling the network or by overloading it with messages so as to degrade performance. Active attacks present the opposite characteristics of passive attacks. Whereas passive attacks are difficult to detect, measures are available to prevent their success. On the other hand, it is quite difficult to prevent active attacks absolutely because of the wide variety of potential physical, software, and network vulnerabilities. Instead, the goal is to detect active attacks and to recover from any disruption or delays caused by them. If the detection has a deterrent effect, it may also contribute to prevention. 1.4 SECURITY SERVICES X.800 defines a security service as a service that is provided by a protocol layer of communicating open systems and that ensures adequate security of the systems or of data transfers. Perhaps a clearer definition is found in RFC 4949, which provides the following definition: a processing or communication service that is provided by a system to give a specific kind of protection to system resources; security services implement security policies and are implemented by security mechanisms. X.800 divides these services into five categories and fourteen specific services (Table 1.2). We look at each category in turn.5 Authentication The authentication service is concerned with assuring that a communication is authentic. In the case of a single message, such as a warning or alarm signal, the function of the authentication service is to assure the recipient that the message is from the source that it claims to be from. In the case of an ongoing interaction, such as the connection of a terminal to a host, two aspects are involved. First, at the time of connection initiation, the service assures that the two entities are authentic, that is, that each is the entity that it claims to be. Second, the service must assure that the connection is not interfered with in such a way that a third party can masquerade as one of the two legitimate parties for the purposes of unauthorized transmission or reception. Two specific authentication services are defined in X.800: ■ 5 Peer entity authentication: Provides for the corroboration of the identity of a peer entity in an association. Two entities are considered peers if they implement to same protocol in different systems; for example two TCP modules in two communicating systems. Peer entity authentication is provided for There is no universal agreement about many of the terms used in the security literature. For example, the term integrity is sometimes used to refer to all aspects of information security. The term authentication is sometimes used to refer both to verification of identity and to the various functions listed under integrity in this chapter. Our usage here agrees with both X.800 and RFC 4949. 30 CHAPTER 1 / COMPUTER AND NETWORK SECURITY CONCEPTS Table 1.2 Security Services (X.800) AUTHENTICATION The assurance that the communicating entity is the one that it claims to be. Peer Entity Authentication Used in association with a logical connection to provide confidence in the identity of the entities connected. Data-Origin Authentication In a connectionless transfer, provides assurance that the source of received data is as claimed. ACCESS CONTROL The prevention of unauthorized use of a resource (i.e., this service controls who can have access to a resource, under what conditions access can occur, and what those accessing the resource are allowed to do). DATA CONFIDENTIALITY The protection of data from unauthorized disclosure. Connection Confidentiality The protection of all user data on a connection. Connectionless Confidentiality The protection of all user data in a single data block. Selective-Field Confidentiality The confidentiality of selected fields within the user data on a connection or in a single data block. Traffic-Flow Confidentiality The protection of the information that might be derived from observation of traffic flows. DATA INTEGRITY The assurance that data received are exactly as sent by an authorized entity (i.e., contain no modification, insertion, deletion, or replay). Connection Integrity with Recovery Provides for the integrity of all user data on a connection and detects any modification, insertion, deletion, or replay of any data within an entire data sequence, with recovery attempted. Connection Integrity without Recovery As above, but provides only detection without recovery. Selective-Field Connection Integrity Provides for the integrity of selected fields within the user data of a data block transferred over a connection and takes the form of determination of whether the selected fields have been modified, inserted, deleted, or replayed. Connectionless Integrity Provides for the integrity of a single connectionless data block and may take the form of detection of data modification. Additionally, a limited form of replay detection may be provided. Selective-Field Connectionless Integrity Provides for the integrity of selected fields within a single connectionless data block; takes the form of determination of whether the selected fields have been modified. NONREPUDIATION Provides protection against denial by one of the entities involved in a communication of having participated in all or part of the communication. Nonrepudiation, Origin Proof that the message was sent by the specified party. Nonrepudiation, Destination Proof that the message was received by the specified party. ■ use at the establishment of, or at times during the data transfer phase of, a connection. It attempts to provide confidence that an entity is not performing either a masquerade or an unauthorized replay of a previous connection. Data origin authentication: Provides for the corroboration of the source of a data unit. It does not provide protection against the duplication or modification of data units. This type of service supports applications like electronic mail, where there are no prior interactions between the communicating entities. 1.4 / SECURITY SERVICES 31 Access Control In the context of network security, access control is the ability to limit and control the access to host systems and applications via communications links. To achieve this, each entity trying to gain access must first be identified, or authenticated, so that access rights can be tailored to the individual. Data Confidentiality Confidentiality is the protection of transmitted data from passive attacks. With respect to the content of a data transmission, several levels of protection can be identified. The broadest service protects all user data transmitted between two users over a period of time. For example, when a TCP connection is set up between two systems, this broad protection prevents the release of any user data transmitted over the TCP connection. Narrower forms of this service can also be defined, including the protection of a single message or even specific fields within a message. These refinements are less useful than the broad approach and may even be more complex and expensive to implement. The other aspect of confidentiality is the protection of traffic flow from analysis. This requires that an attacker not be able to observe the source and destination, frequency, length, or other characteristics of the traffic on a communications facility. Data Integrity As with confidentiality, integrity can apply to a stream of messages, a single message, or selected fields within a message. Again, the most useful and straightforward approach is total stream protection. A connection-oriented integrity service, one that deals with a stream of messages, assures that messages are received as sent with no duplication, insertion, modification, reordering, or replays. The destruction of data is also covered under this service. Thus, the connection-oriented integrity service addresses both message stream modification and denial of service. On the other hand, a connectionless integrity service, one that deals with individual messages without regard to any larger context, generally provides protection against message modification only. We can make a distinction between service with and without recovery. Because the integrity service relates to active attacks, we are concerned with detection rather than prevention. If a violation of integrity is detected, then the service may simply report this violation, and some other portion of software or human intervention is required to recover from the violation. Alternatively, there are mechanisms available to recover from the loss of integrity of data, as we will review subsequently. The incorporation of automated recovery mechanisms is, in general, the more attractive alternative. Nonrepudiation Nonrepudiation prevents either sender or receiver from denying a transmitted message. Thus, when a message is sent, the receiver can prove that the alleged sender in fact sent the message. Similarly, when a message is received, the sender can prove that the alleged receiver in fact received the message. 32 CHAPTER 1 / COMPUTER AND NETWORK SECURITY CONCEPTS Availability Service Both X.800 and RFC 4949 define availability to be the property of a system or a system resource being accessible and usable upon demand by an authorized system entity, according to performance specifications for the system (i.e., a system is available if it provides services according to the system design whenever users request them). A variety of attacks can result in the loss of or reduction in availability. Some of these attacks are amenable to automated countermeasures, such as authentication and encryption, whereas others require some sort of physical action to prevent or recover from loss of availability of elements of a distributed system. X.800 treats availability as a property to be associated with various security services. However, it makes sense to call out specifically an availability service. An availability service is one that protects a system to ensure its availability. This service addresses the security concerns raised by denial-of-service attacks. It depends on proper management and control of system resources and thus depends on access control service and other security services. 1.5 SECURITY MECHANISMS Table 1.3 lists the security mechanisms defined in X.800. The mechanisms are divided into those that are implemented in a specific protocol layer, such as TCP or an application-layer protocol, and those that are not specific to any particular protocol layer or security service. These mechanisms will be covered in the appropriate Table 1.3 Security Mechanisms (X.800) SPECIFIC SECURITY MECHANISMS May be incorporated into the appropriate protocol layer in order to provide some of the OSI security services. Encipherment The use of mathematical algorithms to transform data into a form that is not readily intelligible. The transformation and subsequent recovery of the data depend on an algorithm and zero or more encryption keys. Digital Signature Data appended to, or a cryptographic transformation of, a data unit that allows a recipient of the data unit to prove the source and integrity of the data unit and protect against forgery (e.g., by the recipient). Access Control A variety of mechanisms that enforce access rights to resources. Data Integrity A variety of mechanisms used to assure the integrity of a data unit or stream of data units. PERVASIVE SECURITY MECHANISMS Mechanisms that are not specific to any particular OSI security service or protocol layer. Trusted Functionality That which is perceived to be correct with respect to some criteria (e.g., as established by a security policy). Security Label The marking bound to a resource (which may be a data unit) that names or designates the security attributes of that resource. Event Detection Detection of security-relevant events. Security Audit Trail Data collected and potentially used to facilitate a security audit, which is an independent review and examination of system records and activities. Security Recovery Deals with requests from mechanisms, such as event handling and management functions, and takes recovery actions. 1.5 / SECURITY MECHANISMS 33 SPECIFIC SECURITY MECHANISMS Authentication Exchange A mechanism intended to ensure the identity of an entity by means of information exchange. Traffic Padding The insertion of bits into gaps in a data stream to frustrate traffic analysis attempts. Routing Control Enables selection of particular physically secure routes for certain data and allows routing changes, especially when a breach of security is suspected. Notarization The use of a trusted third party to assure certain properties of a data exchange. places in the book. So we do not elaborate now, except to comment on the definition of encipherment. X.800 distinguishes between reversible encipherment mechanisms and irreversible encipherment mechanisms. A reversible encipherment mechanism is simply an encryption algorithm that allows data to be encrypted and subsequently decrypted. Irreversible encipherment mechanisms include hash algorithms and message authentication codes, which are used in digital signature and message authentication applications. Table 1.4, based on one in X.800, indicates the relationship between security services and security mechanisms. Table 1.4 Relationship Between Security Services and Mechanisms SERVICE En ci p D her m ig ita en A l si t cc g es nat D s co ure at a ntro A inte l ut he grit Tr ntic y affi at io c Ro pa n e ut dd xch in i N ng c g ang ot e o ar nt r iz at ol io n MECHANISM Peer entity authentication Y Y Data origin authentication Y Y Access control Y Confidentiality Y Traffic flow confidentiality Y Data integrity Y Nonrepudiation Availability Y Y Y Y Y Y Y Y Y Y Y 34 CHAPTER 1 / COMPUTER AND NETWORK SECURITY CONCEPTS 1.6 FUNDAMENTAL SECURITY DESIGN PRINCIPLES Despite years of research and development, it has not been possible to develop security design and implementation techniques that systematically exclude security flaws and prevent all unauthorized actions. In the absence of such foolproof techniques, it is useful to have a set of widely agreed design principles that can guide the development of protection mechanisms. The National Centers of Academic Excellence in Information Assurance/Cyber Defense, which is jointly sponsored by the U.S. National Security Agency and the U.S. Department of Homeland Security, list the following as fundamental security design principles [NCAE13]: ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ Economy of mechanism Fail-safe defaults Complete mediation Open design Separation of privilege Least privilege Least common mechanism Psychological acceptability Isolation Encapsulation Modularity Layering Least astonishment The first eight listed principles were first proposed in [SALT75] and have withstood the test of time. In this section, we briefly discuss each principle. Economy of mechanism means that the design of security measures embodied in both hardware and software should be as simple and small as possible. The motivation for this principle is that relatively simple, small design is easier to test and verify thoroughly. With a complex design, there are many more opportunities for an adversary to discover subtle weaknesses to exploit that may be difficult to spot ahead of time. The more complex the mechanism, the more likely it is to possess exploitable flaws. Simple mechanisms tend to have fewer exploitable flaws and require less maintenance. Further, because configuration management issues are simplified, updating or replacing a simple mechanism becomes a less intensive process. In practice, this is perhaps the most difficult principle to honor. There is a constant demand for new features in both hardware and software, complicating the security design task. The best that can be done is to keep this principle in mind during system design to try to eliminate unnecessary complexity. Fail-safe defaults means that access decisions should be based on permission rather than exclusion. That is, the default situation is lack of access, and the protection scheme identifies conditions under which access is permitted. This approach 1.6 / FUNDAMENTAL SECURITY DESIGN PRINCIPLES 35 exhibits a better failure mode than the alternative approach, where the default is to permit access. A design or implementation mistake in a mechanism that gives explicit permission tends to fail by refusing permission, a safe situation that can be quickly detected. On the other hand, a design or implementation mistake in a mechanism that explicitly excludes access tends to fail by allowing access, a failure that may long go unnoticed in normal use. Most file access systems and virtually all protected services on client/server systems use fail-safe defaults. Complete mediation means that every access must be checked against the access control mechanism. Systems should not rely on access decisions retrieved from a cache. In a system designed to operate continuously, this principle requires that, if access decisions are remembered for future use, careful consideration be given to how changes in authority are propagated into such local memories. File access systems appear to provide an example of a system that complies with this principle. However, typically, once a user has opened a file, no check is made to see if permissions change. To fully implement complete mediation, every time a user reads a field or record in a file, or a data item in a database, the system must exercise access control. This resource-intensive approach is rarely used. Open design means that the design of a security mechanism should be open rather than secret. For example, although encryption keys must be secret, encryption algorithms should be open to public scrutiny. The algorithms can then be reviewed by many experts, and users can therefore have high confidence in them. This is the philosophy behind the National Institute of Standards and Technology (NIST) program of standardizing encryption and hash algorithms, and has led to the widespread adoption of NIST-approved algorithms. Separation of privilege is defined in [SALT75] as a practice in which multiple privilege attributes are required to achieve access to a restricted resource. A good example of this is multifactor user authentication, which requires the use of multiple techniques, such as a password and a smart card, to authorize a user. The term is also now applied to any technique in which a program is divided into parts that are limited to the specific privileges they require in order to perform a specific task. This is used to mitigate the potential damage of a computer security attack. One example of this latter interpretation of the principle is removing high privilege operations to another process and running that process with the higher privileges required to perform its tasks. Day-to-day interfaces are executed in a lower privileged process. Least privilege means that every process and every user of the system should operate using the least set of privileges necessary to perform the task. A good example of the use of this principle is role-based access control. The system security policy can identify and define the various roles of users or processes. Each role is assigned only those permissions needed to perform its functions. Each permission specifies a permitted access to a particular resource (such as read and write access to a specified file or directory, connect access to a given host and port). Unless a permission is granted explicitly, the user or process should not be able to access the protected resource. More generally, any access control system should allow each user only the privileges that are authorized for that user. There is also a temporal aspect to the least privilege principle. For example, system programs or administrators who have special privileges should have those privileges only when necessary; 36 CHAPTER 1 / COMPUTER AND NETWORK SECURITY CONCEPTS when they are doing ordinary activities the privileges should be withdrawn. Leaving them in place just opens the door to accidents. Least common mechanism means that the design should minimize the functions shared by different users, providing mutual security. This principle helps reduce the number of unintended communication paths and reduces the amount of hardware and software on which all users depend, thus making it easier to verify if there are any undesirable security implications. Psychological acceptability implies that the security mechanisms should not interfere unduly with the work of users, while at the same time meeting the needs of those who authorize access. If security mechanisms hinder the usability or accessibility of resources, then users may opt to turn off those mechanisms. Where possible, security mechanisms should be transparent to the users of the system or at most introduce minimal obstruction. In addition to not being intrusive or burdensome, security procedures must reflect the user’s mental model of protection. If the protection procedures do not make sense to the user or if the user must translate his image of protection into a substantially different protocol, the user is likely to make errors. Isolation is a principle that applies in three contexts. First, public access systems should be isolated from critical resources (data, processes, etc.) to prevent disclosure or tampering. In cases where the sensitivity or criticality of the information is high, organizations may want to limit the number of systems on which that data is stored and isolate them, either physically or logically. Physical isolation may include ensuring that no physical connection exists between an organization’s public access information resources and an organization’s critical information. When implementing logical isolation solutions, layers of security services and mechanisms should be established between public systems and secure systems responsible for protecting critical resources. Second, the processes and files of individual users should be isolated from one another except where it is explicitly desired. All modern operating systems provide facilities for such isolation, so that individual users have separate, isolated process space, memory space, and file space, with protections for preventing unauthorized access. And finally, security mechanisms should be isolated in the sense of preventing access to those mechanisms. For example, logical access control may provide a means of isolating cryptographic software from other parts of the host system and for protecting cryptographic software from tampering and the keys from replacement or disclosure. Encapsulation can be viewed as a specific form of isolation based on objectoriented functionality. Protection is provided by encapsulating a collection of procedures and data objects in a domain of its own so that the internal structure of a data object is accessible only to the procedures of the protected subsystem, and the procedures may be called only at designated domain entry points. Modularity in the context of security refers both to the development of security functions as separate, protected modules and to the use of a modular architecture for mechanism design and implementation. With respect to the use of separate security modules, the design goal here is to provide common ...
Purchase answer to see full attachment
Explanation & Answer:
2 pages
User generated content is uploaded by users for the purposes of learning and should be used following Studypool's honor code & terms of service.

Explanation & Answer

Attached.

Outline
Topic: Hash values
Paragraph one: Introduction
Thesis: This paper discusses ways to use hash values to log into a system and also crack a
network with how these values are used and misused.
Paragraph two: How hash values are used to log into a system
Paragraph three: How hash values are used to crack down a system
Paragraph four: Uses of hash values
Paragraph six: Misuses of hash values


Running Head: HASH VALUES

1

Hash Values
Student Name
Institution
Course
Instructor
Date

HASH VALUES

2
Introduction

According to Guesmi (2016), hash values are numeric values of a specific length that are
used to identify data uniquely. Thus, hash values are like files’ fingerprints. The cryptographic
algorithm is used in the process of creating hash values of different files to help in identifying
them. When the modifications of...


Anonymous
Very useful material for studying!

Studypool
4.7
Trustpilot
4.5
Sitejabber
4.4

Related Tags