Engineering
Community College of Philadelphia Temperature in degCelcius vs lnR Lab Report

ME 304

Community College of Philadelphia

ME

Question Description

I don’t understand this Engineering question and need help to study.

Hello there

I need help writing abstract for my lab experiment

you will see in the attachment below

an example that you should follow to provide the best work also the excel sheet data and the lab experiment

let me know with any question

Unformatted Attachment Preview

ME304 Mechanical Measurements II Experiment 5: Radial Heat Conduction Objective To measure temperature distribution for transient and steady-state 1-D heat conduction in a cylindrical wall and to determine the thermal conductivity k of the disk material. Theory When the inner and outer surfaces of a thick walled cylinder are each at a different uniform temperature, heat flows radially through the cylinder wall. The heat conduction in this case is governed by Fourier’s law for one-dimensional radial flow: Q = −kA(dT dR) = −2Rhk (dT dR) (here h is the cylinder height, or thickness) The disk can be considered to be constructed as a series of successive layers in the wall. The heat conducted across each layer must be constant if the flow is steady. But since the area to the successive layers increases with radius, the temperature gradient must decrease with radius. This leads to the following logarithmic temperature distribution along the radial direction: Q ln (Ra Rb ) = −2hk (Ta − Tb ) where Ta is the temperature at any radius Ra and Tb is the temperature at any radius Rb. Note that the equation is valid for any pair of radii within the radial domain. Thus, if two temperatures at two known radial positions are measured, the thermal conductivity k of the material can be found as: k= Q ln (Rb Ra ) − Q ln Rb − ln Ra = 2h(Ta − Tb ) 2h Tb − Ta (Eqn. 1) The radial specimen in the HT12 apparatus consists of a disk with the inside radius R1 = 5 mm, the outside radius R0 = 55 mm and thickness h = 3.2 mm. Six thermocouples are located at R1 = 5.7 mm, R2 = 9.9 mm, R3 = 20.3 mm, R4 = 30.1 mm, R5 = 40.1 mm and R6 = 50.5 mm. The outer diameter of the disk is cooled with water while electric heater is located at the disc center. The heat power generated can be determined from: Q = VI where V is heater voltage, I is heater current. Experimental Equipment 1. HT10X Heat Transfer service Unit 2. HT12 Radial Heat Conduction Accessory 3. IFD3 interface device Preliminary procedure 1. 2. Confirm that the six thermocouples on the HT12 unit are connected to the appropriate sockets of the service unit, with the labels on the thermocouple leads (T1-T6) matching the labels on the unit. Ensure that the cold water supply is connected to the inlet of the pressure regulating valve on HT12 and that the flexible cooling water outlet tube is directed to a suitable drain. Experimental procedure 1. 2. 3. 4. 5. 6. 7. 8. 9. Switch on the main power switch. Turn on the cooling water and adjust the flow to 1.5 liters/min +/- 0.2 liters/min Start the computer and bring the HT12 program on Start data acquisition, recording all temperatures every 10 seconds Set the heating power to 50% and record data for about 10 minutes Record all temperatures by hand Turn the heating power off and continue recording data for about 15 minutes Stop data acquisition and save the data file Re-start the software and repeat steps 4-8 for the heating power of 100% Calculations and Results 1. 2. 3. 4. 5. 6. 7. Calculate the average heat power Q added by the heater to the disc (use only data points when the heater was on) for 50% and 100% power. For each power setting, graph six curves: T1 through T6 as a function of time (two graphs, 6 curves each). For each power setting, estimate the steady-state temperature values T1 through T6 from the two graphs of point 2 (total of 12 values). Create a single log/linear plot of steady-state temperature (deg C) on the linear vertical axis as a function of radius (mm) on the logarithmic horizontal axis. Plot data for each power setting and draw two linear trend lines. The plot should be similar to the one shown. Estimate uncertainties on temperatures and radial positions and add them as error bars. Using the trend line equations, estimate temperature To at the outer periphery of the disk (Ro = 55 mm) for 50% and 100% power setting. Using the trend line equations (slopes, in particular) and manipulating the equations presented in the Theory section, calculate the thermal conductivity of the disk material for 50% and 100% power setting. Compare the two values with each other. Note: An alternative (not as good) way to calculate k is to use temperature values at any two selected positions. Do not use two adjacent thermocouples. Based on thermal conductivity values available in the literature, list most likely materials the disk is made of. References 1. Heat transfer unit HT10X manual, Armfiled Inc. Jackson, NJ 08527 2. Radial heat conduction HT12 manual, Armfiled Inc. Jackson, NJ 08527 HT12-304 Radial Heat Conduction - Run 1 Results Sample Number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 Elapsed Time 00:01 00:11 00:21 00:31 00:41 00:51 01:01 01:11 01:21 01:31 01:41 01:51 02:01 02:11 02:21 02:31 02:41 02:51 03:01 03:11 03:21 03:31 03:41 03:51 04:01 04:11 04:21 04:31 04:41 04:51 05:01 05:11 Temp T1 7mm Temp T2 10mm Temp T3 20mm Temp T4 30mm Temp T5 40mm Temp T6 50mm [°C] [°C] [°C] [°C] [°C] 6.7 6.6 6.7 6.6 6.7 6.7 8.3 10.5 12.7 14.5 16.0 17.4 18.6 19.6 20.5 21.3 21.9 22.5 22.9 23.3 23.8 24.0 24.4 24.7 24.9 25.1 25.3 25.4 25.5 25.6 25.7 25.8 8.9 8.9 8.9 8.9 8.9 8.8 9.4 10.6 11.8 13.0 14.0 14.8 15.6 16.3 16.8 17.4 18.0 18.5 18.6 18.9 19.3 19.5 19.7 19.8 20.2 20.2 20.3 20.5 20.5 20.6 20.8 20.7 8.0 8.1 8.1 8.1 8.1 8.1 8.2 8.9 9.8 10.5 11.4 12.0 12.6 13.2 13.6 13.8 14.2 14.6 14.6 14.9 15.2 15.3 15.3 15.6 15.6 15.7 15.9 16.0 16.0 16.1 16.2 16.2 8.5 8.5 8.4 8.4 8.5 8.5 8.6 8.9 9.5 9.9 10.4 10.8 11.2 11.6 11.8 12.0 12.3 12.5 12.5 12.8 13.0 13.0 13.2 13.2 13.3 13.5 13.5 13.4 13.5 13.5 13.6 13.6 8.4 8.5 8.4 8.5 8.4 8.5 8.5 8.7 8.9 9.2 9.5 9.8 10.0 10.2 10.4 10.5 10.7 10.8 10.8 10.9 11.1 11.1 11.2 11.3 11.2 11.3 11.4 11.4 11.3 11.4 11.5 11.5 Page 1 [°C] Heater Voltage V [V] Heater Current I [A] Water Flowrate F [l/min] 6.9 6.9 6.9 6.9 7.0 6.9 6.8 7.0 7.2 7.4 7.5 7.6 7.9 7.9 8.1 8.2 8.2 8.4 8.4 8.5 8.5 8.5 8.5 8.6 8.5 8.7 8.6 8.7 8.7 8.6 8.7 8.7 0.2 0.2 0.2 0.2 0.2 0.2 11.9 11.9 11.9 11.9 11.9 11.9 11.9 11.9 11.9 11.9 12.0 11.9 11.9 11.9 12.0 12.0 11.9 11.9 11.9 12.0 11.9 12.0 11.9 11.9 11.9 12.0 0.03 0.03 0.03 0.03 0.03 0.14 1.73 1.72 1.72 1.73 1.72 1.73 1.73 1.73 1.74 1.73 1.74 1.74 1.73 1.74 1.73 1.73 1.73 1.74 1.73 1.73 1.73 1.73 1.72 1.74 1.75 1.73 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 Notes HT12-304 Radial Heat Conduction - Run 1 Results 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 05:21 05:31 05:41 05:51 06:01 06:11 06:21 06:31 06:41 06:51 07:01 07:11 07:21 07:31 07:41 07:51 08:01 08:11 08:21 08:31 08:41 08:51 09:01 09:11 09:21 09:31 09:41 09:51 10:01 10:11 10:21 10:31 10:41 10:51 11:01 11:11 11:21 25.9 26.0 26.0 26.1 26.2 26.2 26.2 26.3 26.3 26.3 26.4 26.3 26.3 26.4 26.3 26.3 26.4 26.5 26.3 26.5 26.5 26.4 26.5 26.4 26.6 26.4 26.5 26.3 24.3 22.1 20.0 18.3 16.8 15.5 14.5 13.6 12.7 20.7 20.9 21.0 21.0 21.1 21.1 21.1 21.2 21.2 21.3 21.3 21.3 21.3 21.3 21.4 21.3 21.4 21.4 21.4 21.4 21.4 21.4 21.5 21.5 21.5 21.5 21.5 21.5 20.7 19.4 18.2 17.1 16.1 15.2 14.6 13.9 13.3 16.1 16.1 16.3 16.3 16.4 16.4 16.4 16.4 16.5 16.5 16.5 16.5 16.6 16.6 16.5 16.6 16.5 16.4 16.7 16.6 16.6 16.6 16.6 16.6 16.6 16.6 16.6 16.6 16.2 15.5 14.6 13.9 13.2 12.6 12.0 11.6 11.1 13.8 13.7 13.7 13.7 13.9 13.7 13.9 13.8 13.7 13.8 13.7 13.9 13.9 13.9 13.9 13.9 14.0 14.0 13.8 13.9 14.0 14.0 14.0 14.1 13.9 14.0 13.9 14.0 13.7 13.3 12.9 12.4 12.0 11.5 11.1 10.8 10.5 11.6 11.6 11.4 11.5 11.6 11.7 11.6 11.7 11.6 11.6 11.6 11.7 11.7 11.6 11.7 11.6 11.6 11.5 11.7 11.7 11.7 11.8 11.7 11.7 11.8 11.7 11.7 11.7 11.6 11.4 11.0 10.9 10.5 10.3 10.2 10.0 9.8 Page 2 8.7 8.6 8.7 8.7 8.8 8.8 8.8 8.7 8.6 8.8 8.8 8.7 8.8 8.8 8.8 8.8 8.8 8.8 8.9 8.7 8.8 8.9 8.8 8.8 8.8 8.8 8.7 8.9 8.9 8.6 8.5 8.5 8.3 8.0 7.9 7.9 7.7 11.9 11.9 12.0 11.9 11.9 11.9 11.9 11.9 11.9 11.9 11.9 11.9 12.0 12.0 11.9 11.9 12.0 11.9 11.9 11.9 11.9 11.9 12.0 12.0 12.0 12.0 11.9 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 1.72 1.73 1.73 1.73 1.73 1.73 1.73 1.74 1.72 1.72 1.72 1.72 1.73 1.73 1.73 1.73 1.73 1.73 1.73 1.72 1.73 1.73 1.73 1.72 1.74 1.73 1.74 0.02 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 HT12-304 Radial Heat Conduction - Run 1 Results 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 11:31 11:41 11:51 12:01 12:11 12:21 12:31 12:41 12:51 13:01 13:11 13:21 13:31 13:41 13:51 14:01 14:11 14:21 14:31 14:41 14:51 15:01 15:11 15:21 15:31 15:41 15:51 16:01 16:11 16:21 16:31 16:41 16:51 17:01 17:11 17:21 17:31 12.0 11.4 10.6 10.3 9.9 9.5 9.2 9.0 8.8 8.6 8.2 8.3 8.1 7.9 7.8 7.7 7.6 7.5 7.4 7.4 7.3 7.2 7.3 7.2 7.1 7.2 7.1 7.0 7.1 7.0 7.0 7.0 7.0 7.0 6.8 7.0 6.9 12.8 12.4 12.0 11.8 11.5 11.2 11.0 10.8 10.6 10.4 10.4 10.3 10.2 10.0 9.9 10.0 9.8 9.9 9.8 9.7 9.6 9.7 9.6 9.6 9.5 9.5 9.4 9.4 9.4 9.4 9.4 9.3 9.2 9.3 9.2 9.4 9.3 10.8 10.5 10.3 10.1 9.8 9.7 9.6 9.3 9.2 9.1 9.1 9.0 9.0 8.9 8.7 8.7 8.7 8.7 8.6 8.5 8.5 8.4 8.4 8.5 8.4 8.3 8.4 8.4 8.3 8.3 8.4 8.4 8.5 8.4 8.3 8.2 8.2 10.4 10.2 10.0 9.8 9.6 9.6 9.5 9.3 9.3 9.2 9.2 9.0 9.1 8.9 9.0 8.9 8.8 8.9 8.9 8.8 8.8 8.7 8.8 8.8 8.6 8.8 8.7 8.7 8.7 8.7 8.6 8.7 8.6 8.7 8.6 8.7 8.6 9.7 9.6 9.4 9.3 9.2 9.1 9.2 9.0 9.1 8.9 8.9 8.7 8.8 8.8 8.8 8.8 8.7 8.7 8.6 8.7 8.7 8.7 8.7 8.6 8.7 8.6 8.6 8.6 8.6 8.6 8.6 8.6 8.6 8.6 8.6 8.5 8.6 Page 3 7.6 7.6 7.5 7.4 7.3 7.3 7.3 7.2 7.2 7.3 7.2 7.2 7.1 7.1 7.1 7.1 7.1 7.1 7.0 7.1 7.0 7.1 7.1 7.0 7.1 7.1 7.1 7.0 7.0 7.0 7.1 7.0 7.0 7.0 7.1 7.0 7.0 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.03 0.03 0.03 0.03 0.03 0.02 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.02 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.02 0.03 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 HT12-304 Radial Heat Conduction - Run 1 Results 107 108 109 110 111 112 17:41 17:51 18:01 18:11 18:21 18:31 6.9 6.8 6.8 6.9 6.9 6.8 9.1 9.2 9.2 9.1 9.2 9.2 8.4 8.3 8.3 8.3 8.3 8.2 8.7 8.6 8.6 8.6 8.6 8.7 8.6 8.5 8.6 8.6 8.5 8.5 Page 4 7.1 7.0 7.0 7.0 7.0 7.1 0.2 0.2 0.2 0.2 0.2 0.2 0.03 0.03 0.03 0.03 0.03 0.03 1.50 1.50 1.50 1.50 1.50 1.50 HT12-304 Radial Heat Conduction - Run 1 Results Page 5 HT12-304 Radial Heat Conduction - Run 1 Results Page 6 HT12-304 Radial Heat Conduction - Run 1 Results Page 7 HT12-304 Radial Heat Conduction - Run 1 Results Page 8 HT12-304 Radial Heat Conduction - Run 1 Results Sample Number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 Elapsed Time 00:01 00:11 00:21 00:31 00:41 00:51 01:01 01:11 01:21 01:31 01:41 01:51 02:01 02:11 02:21 02:31 02:41 02:51 03:01 03:11 03:21 03:31 03:41 03:51 04:01 04:11 04:21 04:31 04:41 04:51 05:01 05:11 Temp T1 7mm Temp T2 10mm Temp T3 20mm Temp T4 30mm Temp T5 40mm Temp T6 50mm [°C] [°C] [°C] [°C] [°C] 24.1 31.5 39.5 46.4 52.2 57.3 61.5 65.0 68.2 70.9 73.3 75.3 77.0 78.4 79.6 80.7 81.7 82.5 83.2 83.9 84.4 85.0 85.4 85.7 86.1 86.4 86.7 86.9 87.2 87.4 87.5 87.7 19.5 22.3 26.9 31.2 35.3 38.7 41.8 44.5 46.9 48.9 50.7 52.2 53.6 54.7 56.0 56.9 57.8 58.6 59.3 60.0 60.4 60.9 61.2 61.6 61.9 62.2 62.5 62.6 63.0 63.1 63.3 63.5 15.3 16.6 19.2 22.3 25.1 27.4 29.8 31.6 33.2 34.6 35.7 36.8 37.8 38.5 39.2 39.7 40.2 40.6 41.1 41.5 41.7 42.0 42.3 42.5 42.7 42.9 43.2 43.2 43.5 43.4 43.6 43.7 13.0 13.5 15.0 16.8 18.7 20.3 21.7 23.0 24.0 25.1 26.0 26.8 27.2 27.8 28.1 28.6 29.0 29.3 29.6 29.9 30.1 30.3 30.4 30.5 30.7 30.9 30.9 31.2 31.2 31.3 31.3 31.3 11.0 11.3 12.1 13.2 14.3 15.1 16.1 16.8 17.5 18.3 18.8 19.3 19.6 19.9 20.1 20.4 20.6 21.0 21.1 21.3 21.3 21.5 21.6 21.6 21.8 21.9 22.0 22.1 22.2 22.1 22.2 22.3 Page 9 [°C] Heater Voltage V [V] Heater Current I [A] Water Flowrate F [l/min] 8.5 8.7 9.0 9.6 10.3 10.7 11.4 11.8 12.2 12.7 12.8 13.2 13.3 13.5 13.6 13.8 14.0 14.1 14.1 14.2 14.4 14.3 14.4 14.5 14.6 14.5 14.6 14.6 14.7 14.7 14.7 14.6 23.9 23.9 23.9 23.9 23.9 24.0 23.9 23.9 23.9 23.9 23.9 23.9 24.0 24.0 24.0 24.0 24.0 23.9 23.9 23.9 23.9 23.9 23.9 23.9 23.9 24.0 23.9 23.9 24.0 24.0 23.9 24.0 3.67 3.64 3.65 3.65 3.67 3.63 3.66 3.64 3.65 3.63 3.65 3.65 3.66 3.63 3.66 3.63 3.66 3.63 3.63 3.63 3.66 3.63 3.66 3.64 3.64 3.64 3.66 3.63 3.66 3.65 3.64 3.63 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 Notes HT12-304 Radial Heat Conduction - Run 1 Results 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 05:21 05:31 05:41 05:51 06:01 06:11 06:21 06:31 06:41 06:51 07:01 07:11 07:21 07:31 07:41 07:51 08:01 08:11 08:21 08:31 08:41 08:51 09:01 09:11 09:21 09:31 09:41 09:51 10:01 10:11 10:21 10:31 10:41 10:51 11:01 11:11 11:21 87.8 87.9 88.1 88.2 88.3 88.4 88.4 88.6 88.5 88.7 88.7 88.8 88.9 88.9 88.7 88.9 88.9 88.9 89.0 89.1 89.0 89.0 88.8 89.0 89.0 89.0 89.1 85.1 75.1 66.0 58.0 51.2 45.4 40.5 36.2 32.5 29.3 63.5 63.6 63.8 63.8 64.0 64.0 64.1 64.3 64.4 64.3 64.4 64.4 64.3 64.5 64.4 64.5 64.5 64.5 64.5 64.5 64.4 64.5 64.5 64.5 64.5 64.5 64.4 63.2 57.7 51.9 46.5 41.7 37.8 34.3 31.4 28.8 26.7 43.8 43.9 43.9 43.9 44.0 44.1 44.1 44.1 44.2 44.2 44.2 44.2 44.4 44.3 44.4 44.4 44.2 44.4 44.5 44.4 44.5 44.4 44.5 44.6 44.4 44.5 44.6 44.3 41.5 37.9 34.2 30.9 28.2 25.6 23.5 21.8 20.2 31.4 31.4 31.7 31.4 31.6 31.6 31.6 31.8 31.6 31.8 31.6 31.8 31.8 31.8 31.9 31.9 31.9 31.9 32.0 32.0 32.1 32.1 32.0 32.1 32.0 32.1 32.0 32.0 30.8 28.5 26.3 24.1 22.2 20.5 19.0 17.8 16.8 22.4 22.2 22.4 22.3 22.2 22.4 22.4 22.6 22.4 22.5 22.3 22.6 22.4 22.3 22.3 22.4 22.4 22.5 22.4 22.5 22.5 22.5 22.6 22.6 22.6 22.4 22.6 22.5 22.0 20.8 19.4 18.1 16.8 15.8 14.8 14.1 13.5 Page 10 14.7 14.7 14.6 14.8 14.7 14.8 14.7 14.8 14.8 14.6 14.8 14.8 14.7 14.8 14.7 14.8 14.7 14.7 14.7 14.8 14.7 14.7 14.7 14.6 14.7 14.7 14.7 14.7 14.6 13.9 13.2 12.4 11.8 11.1 10.6 10.2 9.8 24.0 24.0 24.0 23.9 24.0 23.9 23.9 24.0 23.9 23.9 23.9 23.9 23.9 24.0 24.0 24.0 23.9 24.0 23.9 24.0 23.9 23.9 24.0 23.9 24.0 23.9 24.0 0.2 0.2 0.3 0.2 0.2 0.2 0.2 0.2 0.2 0.3 3.65 3.66 3.66 3.65 3.64 3.65 3.66 3.66 3.64 3.65 3.63 3.63 3.64 3.66 3.66 3.65 3.64 3.64 3.64 3.65 3.64 3.64 3.65 3.64 3.64 3.64 3.67 0.03 0.03 0.04 0.03 0.03 0.03 0.03 0.03 0.04 0.03 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 HT12-304 Radial Heat Conduction - Run 1 Results 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 11:31 11:41 11:51 12:01 12:11 12:21 12:31 12:41 12:51 13:01 13:11 13:21 13:31 13:41 13:51 14:01 14:11 14:21 14:31 14:41 14:51 15:01 15:11 15:21 15:31 15:41 15:51 26.5 24.1 22.0 20.2 18.8 17.3 16.1 15.1 14.3 13.4 12.7 12.1 11.6 11.1 10.6 10.2 10.0 9.7 9.4 9.2 9.0 8.9 8.6 8.4 8.3 8.2 8.1 24.8 23.2 21.9 20.6 19.5 18.8 17.8 17.1 16.4 15.8 15.4 14.9 14.6 14.3 14.0 13.6 13.4 13.2 12.9 12.6 12.6 12.3 12.2 12.1 12.0 11.9 11.7 18.8 17.7 16.7 15.8 15.0 14.4 13.8 13.2 12.7 12.4 12.0 11.7 11.4 11.2 10.9 10.8 10.6 10.4 10.4 10.2 10.1 9.9 9.9 9.8 9.7 9.5 9.6 15.8 15.0 14.4 13.8 13.2 12.6 12.4 11.8 11.7 11.4 11.1 10.9 10.7 10.6 10.4 10.4 10.3 10.1 10.0 10.0 9.9 9.8 9.7 9.6 9.5 9.5 9.5 12.9 12.4 12.0 11.6 11.2 10.9 10.7 10.5 10.2 10.2 10.0 9.8 9.7 9.6 9.5 9.5 9.4 9.2 9.2 9.0 9.0 9.0 9.0 8.8 8.9 8.8 8.8 Page 11 9.4 9.1 8.8 8.6 8.5 8.3 8.2 8.0 7.9 7.8 7.8 7.6 7.5 7.4 7.4 7.4 7.3 7.3 7.2 7.3 7.2 7.1 7.1 7.1 7.1 7.0 7.0 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.3 0.2 0.2 0.2 0.2 0.2 0.2 0.04 0.03 0.03 0.03 0.04 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.04 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.04 0.03 0.03 0.03 0.03 0.03 0.03 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 HT12-304 Radial Heat Conduction - Run 1 Results Page 12 HT12-304 Radial Heat Conduction - Run 1 Results Page 13 HT12-304 Radial Heat Conduction - Run 1 Results Page 14 Temperature vs. Time @ 50% Power 30.0 Temperature (°C) 25.0 20.0 T1 T2 15.0 T3 10.0 T4 T5 5.0 T6 0.0 00:00 02:53 05:46 08:38 11:31 14:24 17:17 20:10 Time (mm:ss) Temperature (°C) Temperature vs. Time @ 100% Power 100.0 90.0 80.0 70.0 60.0 50.0 40.0 30.0 20.0 10.0 0.0 00:00 T1 T2 T3 T4 T5 T6 02:53 05:46 08:38 11:31 Time (mm:ss) 14:24 17:17 Abbreviated Individual Reports The lab reports for Experiments 6 through 8 will follow an abbreviated format. The following items are now required (see sample report on next pages): • Title Page with Abstract • Experimental Results – follow the instructions from each lab handout and present all the results in tables and/or graphs. Include the most important equations, as needed • Sample calculations, including units • References, as needed Writing an Abstract Abstract is a stand-alone autonomous paragraph which describes all the work done in a nutshell. It should not refer to tables or graphs in the report. Abstract should not exceed 250 words and should discuss the following: • Intro statement of the problem investigated, including the objective • How was the objective pursued • Summary of most important results and conclusions • Relevance of the conclusions to engineering See the sample below. 1 (Sample Abbreviated Report) Abbreviated Report, ME 304, Session# 3, Exp. #8 Performed by Team A on 1/6/2020 Submitted by: Mark Smith on 1/13/2020 Venturi and Orifice Flow Meters Abstract In principal, any calibrated obstruction could be used as a flow meter by measuring the pressure drop across the obstruction. This laboratory investigates two types of obstruction flow meters that are commonly used in industry: Venturi flow meter and orifice flow meter. The main objective of the lab was to determine calibration curves for the two flow meters. Using an instrumented pipe system, water was pumped through a reference flow meter (rotameter type) and through the two investigated obstruction flow meters (all in series) and both the flow rate Q and the pressure drop P across each of the two flow meters were recorded at various flow rates Q. The determined calibration curves Q(P) were shown to follow closely (within 5%) the form Q = a P , where a is a constant. The orifice flow meter showed about 100% higher flow rates than the Venturi flow meter at the same pressure drop. This laboratory demonstrated how measurement of pressure drop across an obstruction flow meter can be used to determine the flow rate in a duct. This can be a very convenient and cost-effective method of flow measurement, especially for large ducts. 2 Experimental Results The measured results are presented for each flow rate in Table 1 and all values converted to SI units are presented in Table 2. In the tables ΔPV and ΔPO are the pressure drops across the Venturi and the orifice flow meters, respectively. Table 1 Averaged Measured Values ΔPV (mbar) 1.0 7.4 18.1 22.9 31.0 39.2 48.3 57.9 Q (GPM) 2 4 6 7 8 9 10 12 Table 2 Averaged Measured Values in SI units ΔPO (mbar) 0.4 2.6 6.2 6.6 10.3 12.7 17.3 21.5 Q (m3/s) ΔPV (Pa) ΔPO (Pa) 0.000126 100 40 0.000252 740 260 0.000379 1810 620 0.000442 2290 660 0.000505 3100 1030 0.000568 3920 1270 0.000631 4830 1730 0.000757 5790 2150 The ...
Purchase answer to see full attachment
Student has agreed that all tutoring, explanations, and answers provided by the tutor will be used to help in the learning process and in accordance with Studypool's honor code & terms of service.

Final Answer

I understand the experiment check. Check if you need any changes. Thanks. 👊

variable name
units

heater
current
A

voltage
V

T1
K

T2
K

T3
K

T4
K

T5
K

12

1.74 301.4648 296.4844 291.6016 288.8672 286.7188

24

3.67 364.0625 339.3555 319.6289 307.0313 297.5586

values

R mm
lnR
T (50% power) [°C]
T (100% power)[°C]
4.007333
10.37052

8.422716

Temperature in degCelcius vs lnR
100
90
80
70
60

Temperature deg Celcius

at Ro=55 (lnRo)
T (50% power) [°C]
T (100% power)[°C]

7
10
20
30
40
1.94591 2.302585 2.995732 3.401197 3.688879
26.5
21.5
16.6
13.9
11.7
89.1
64.4
...

galogalma (1577)
UCLA

Anonymous
Top quality work from this tutor! I’ll be back!

Anonymous
It’s my second time using SP and the work has been great back to back :) The one and only resource on the Interwebs for the work that needs to be done!

Anonymous
Thanks, good work

Studypool
4.7
Trustpilot
4.5
Sitejabber
4.4
Similar Questions
Related Tags