How to prove the converse of lim (f(x) + g(x)) = limf(x) + lim g(x)

timer Asked: Aug 2nd, 2014
account_balance_wallet $5

Question Description

Prove the converse of the above using epsilon and delta?  I really have no clue

Tutor Answer

Prashant S
School: Duke University

Disclaimer: I did this stuff a while back, so I don't know if this over what you are supposed to know or at the right level.

The converse of this statement would be: lim f(x) + lim g(x) = lim (f(x)+g(x))

Assume limx->af(x) = L1 and limx->ag(x) = L2.

We need to show that for any ε>0  there will exist a δ such that if |x-a|<δ then |f(x)+g(x)-(L1 + L2)|<ε.

Since |f(x)+g(x)-(L1 + L2)| < |f(x)-L1| + |g(x)-L2|,

we can chose a δ such that |f(x)-L1|< ϵ/2 and |g(x)-L2|< ϵ /2.

Since we know a δ1 exists such that if |x-a|<δ1 then |f(x)-L1|< ϵ /2 and another δ2 exists such that if |x-a|<δ2 then |g(x)-L2|< ϵ /2.

If we let δ be the minimum of δ1 and δ2.

We see that: lim f(x) + lim g(x) = lim (f(x)+g(x))


flag Report DMCA

Thank you! Reasonably priced given the quality not just of the tutors but the moderators too. They were helpful and accommodating given my needs.

Brown University

1271 Tutors

California Institute of Technology

2131 Tutors

Carnegie Mellon University

982 Tutors

Columbia University

1256 Tutors

Dartmouth University

2113 Tutors

Emory University

2279 Tutors

Harvard University

599 Tutors

Massachusetts Institute of Technology

2319 Tutors

New York University

1645 Tutors

Notre Dam University

1911 Tutors

Oklahoma University

2122 Tutors

Pennsylvania State University

932 Tutors

Princeton University

1211 Tutors

Stanford University

983 Tutors

University of California

1282 Tutors

Oxford University

123 Tutors

Yale University

2325 Tutors