 Mathematics
Definite integral of the area

### Question Description

Use a definite integral to find the area bounded by the graphs of the indicated equations over the given interval. y=2x+3; y=x-1; 6<x<8. We will take this integral for x from the constants 6 to 8

we need to find the function we will integrate. in general for eqns such as this the formula will be upper graph minus lower graph. This makes sense because if we take the area of the upper graph we have some extra space below the lower graph. We can then subtracts this extra area by taking the integral of the lower graph and subtracting it from the upper;

The upper graph can be found by finding the y value for x=6 for both equations

y=6-1=5

y=2*6+3=15

these are both lines, so the y=2x+3 will always be above y=x-1. If the were not lines and the interesected in the region between 6 and 8, we would have to make a complicated integral, considering this.

integral from x=6 to x=8 of (2x+3-x+1) dx

integral from x=6 to x=8 of (x+4) dx

= x^2/2 + 4x evaluated at x=6 and x=8

=32+32 - 18 - 24

=22 Prashant S (1995)
Purdue University Anonymous
I was on a very tight deadline but thanks to Studypool I was able to deliver my assignment on time. Anonymous
The tutor was pretty knowledgeable, efficient and polite. Great service! Anonymous
Heard about Studypool for a while and finally tried it. Glad I did caus this was really helpful. Studypool 4.7 Trustpilot 4.5 Sitejabber 4.4 Brown University

1271 Tutors California Institute of Technology

2131 Tutors Carnegie Mellon University

982 Tutors Columbia University

1256 Tutors Dartmouth University

2113 Tutors Emory University

2279 Tutors Harvard University

599 Tutors Massachusetts Institute of Technology

2319 Tutors New York University

1645 Tutors Notre Dam University

1911 Tutors Oklahoma University

2122 Tutors Pennsylvania State University

932 Tutors Princeton University

1211 Tutors Stanford University

983 Tutors University of California

1282 Tutors Oxford University

123 Tutors Yale University

2325 Tutors