### Unformatted Attachment Preview

Game playing
Chapter 6
Chapter 6
1
Outline
♦ Games
♦ Perfect play
– minimax decisions
– α–β pruning
♦ Resource limits and approximate evaluation
♦ Games of chance
♦ Games of imperfect information
Chapter 6
2
Games vs. search problems
“Unpredictable” opponent ⇒ solution is a strategy
specifying a move for every possible opponent reply
Time limits ⇒ unlikely to find goal, must approximate
Plan of attack:
• Computer considers possible lines of play (Babbage, 1846)
• Algorithm for perfect play (Zermelo, 1912; Von Neumann, 1944)
• Finite horizon, approximate evaluation (Zuse, 1945; Wiener, 1948;
Shannon, 1950)
• First chess program (Turing, 1951)
• Machine learning to improve evaluation accuracy (Samuel, 1952–57)
• Pruning to allow deeper search (McCarthy, 1956)
Chapter 6
3
Types of games
deterministic
chance
perfect information
chess, checkers,
go, othello
backgammon
monopoly
imperfect information
battleships,
blind tictactoe
bridge, poker, scrabble
nuclear war
Chapter 6
4
Game tree (2-player, deterministic, turns)
MAX (X)
X
X
X
MIN (O)
X
X
X
X
X O
X
X O X
X O
X
O
MAX (X)
MIN (O)
TERMINAL
Utility
X
O
...
X O
X
...
...
...
...
...
X O X
O X
O
X O X
O O X
X X O
X O X
X
X O O
...
−1
0
+1
X
X
Chapter 6
5
Minimax
Perfect play for deterministic, perfect-information games
Idea: choose move to position with highest minimax value
= best achievable payoﬀ against best play
E.g., 2-ply game:
3
MAX
A1
A2
A3
3
MIN
A 11
3
A 12
12
2
A 21
A 13
8
2
2
A 31
A 22 A 23
4
6
14
A 32
A 33
5
2
Chapter 6
6
Minimax algorithm
function Minimax-Decision(state) returns an action
inputs: state, current state in game
return the a in Actions(state) maximizing Min-Value(Result(a, state))
function Max-Value(state) returns a utility value
if Terminal-Test(state) then return Utility(state)
v ← −∞
for a, s in Successors(state) do v ← Max(v, Min-Value(s))
return v
function Min-Value(state) returns a utility value
if Terminal-Test(state) then return Utility(state)
v←∞
for a, s in Successors(state) do v ← Min(v, Max-Value(s))
return v
Chapter 6
7
Properties of minimax
Complete??
Chapter 6
8
Properties of minimax
Complete?? Only if tree is finite (chess has specific rules for this).
NB a finite strategy can exist even in an infinite tree!
Optimal??
Chapter 6
9
Properties of minimax
Complete?? Yes, if tree is finite (chess has specific rules for this)
Optimal?? Yes, against an optimal opponent. Otherwise??
Time complexity??
Chapter 6
10
Properties of minimax
Complete?? Yes, if tree is finite (chess has specific rules for this)
Optimal?? Yes, against an optimal opponent. Otherwise??
Time complexity?? O(bm)
Space complexity??
Chapter 6
11
Properties of minimax
Complete?? Yes, if tree is finite (chess has specific rules for this)
Optimal?? Yes, against an optimal opponent. Otherwise??
Time complexity?? O(bm)
Space complexity?? O(bm) (depth-first exploration)
For chess, b ≈ 35, m ≈ 100 for “reasonable” games
⇒ exact solution completely infeasible
But do we need to explore every path?
Chapter 6
12
α–β
pruning example
3
MAX
3
MIN
3
12
8
Chapter 6
13
α–β
pruning example
3
MAX
2
3
MIN
3
12
8
2
X
X
Chapter 6
14
α–β
pruning example
3
MAX
2
3
MIN
3
12
8
2
X
X
14
14
Chapter 6
15
α–β
pruning example
3
MAX
2
3
MIN
3
12
8
2
X
X
14
14
5
5
Chapter 6
16
α–β
pruning example
3 3
MAX
2
3
MIN
3
12
8
2
X
X
14
14
5
5 2
2
Chapter 6
17
Why is it called α–β ?
MAX
MIN
..
..
..
MAX
MIN
V
α is the best value (to max) found so far oﬀ the current path
If V is worse than α, max will avoid it ⇒ prune that branch
Define β similarly for min
Chapter 6
18
The α–β algorithm
function Alpha-Beta-Decision(state) returns an action
return the a in Actions(state) maximizing Min-Value(Result(a, state))
function Max-Value(state, α, β) returns a utility value
inputs: state, current state in game
α, the value of the best alternative for max along the path to state
β, the value of the best alternative for min along the path to state
if Terminal-Test(state) then return Utility(state)
v ← −∞
for a, s in Successors(state) do
v ← Max(v, Min-Value(s, α, β))
if v ≥ β then return v
α ← Max(α, v)
return v
function Min-Value(state, α, β) returns a utility value
same as Max-Value but with roles of α, β reversed
Chapter 6
19
Properties of α–β
Pruning does not aﬀect final result
Good move ordering improves eﬀectiveness of pruning
With “perfect ordering,” time complexity = O(bm/2)
⇒ doubles solvable depth
A simple example of the value of reasoning about which computations are
relevant (a form of metareasoning)
Unfortunately, 3550 is still impossible!
Chapter 6
20
Resource limits
Standard approach:
• Use Cutoff-Test instead of Terminal-Test
e.g., depth limit (perhaps add quiescence search)
• Use Eval instead of Utility
i.e., evaluation function that estimates desirability of position
Suppose we have 100 seconds, explore 104 nodes/second
⇒ 106 nodes per move ≈ 358/2
⇒ α–β reaches depth 8 ⇒ pretty good chess program
Chapter 6
21
Evaluation functions
Black to move
White to move
White slightly better
Black winning
For chess, typically linear weighted sum of features
Eval(s) = w1f1(s) + w2f2(s) + . . . + wnfn(s)
e.g., w1 = 9 with
f1(s) = (number of white queens) – (number of black queens), etc.
Chapter 6
22
Digression: Exact values don’t matter
MAX
MIN
2
1
1
2
2
20
1
4
1
20
20
400
Behaviour is preserved under any monotonic transformation of Eval
Only the order matters:
payoﬀ in deterministic games acts as an ordinal utility function
Chapter 6
23
Deterministic games in practice
Checkers: Chinook ended 40-year-reign of human world champion Marion
Tinsley in 1994. Used an endgame database defining perfect play for all
positions involving 8 or fewer pieces on the board, a total of 443,748,401,247
positions.
Chess: Deep Blue defeated human world champion Gary Kasparov in a sixgame match in 1997. Deep Blue searches 200 million positions per second,
uses very sophisticated evaluation, and undisclosed methods for extending
some lines of search up to 40 ply.
Othello: human champions refuse to compete against computers, who are
too good.
Go: human champions refuse to compete against computers, who are too
bad. In go, b > 300, so most programs use pattern knowledge bases to
suggest plausible moves.
Chapter 6
24
Nondeterministic games: backgammon
0
25
1 2 3 4
5
6
24 23 22 21 20 19
7 8
9 10 11 12
18 17 16 15 14 13
Chapter 6
25
Nondeterministic games in general
In nondeterministic games, chance introduced by dice, card-shuﬄing
Simplified example with coin-flipping:
MAX
3
CHANCE
−1
0.5
MIN
2
2
0.5
0.5
4
4
7
0.5
0
4
6
−2
0
5
−2
Chapter 6
26
Algorithm for nondeterministic games
Expectiminimax gives perfect play
Just like Minimax, except we must also handle chance nodes:
...
if state is a Max node then
return the highest ExpectiMinimax-Value of Successors(state)
if state is a Min node then
return the lowest ExpectiMinimax-Value of Successors(state)
if state is a chance node then
return average of ExpectiMinimax-Value of Successors(state)
...
Chapter 6
27
Nondeterministic games in practice
Dice rolls increase b: 21 possible rolls with 2 dice
Backgammon ≈ 20 legal moves (can be 6,000 with 1-1 roll)
depth 4 = 20 × (21 × 20)3 ≈ 1.2 × 109
As depth increases, probability of reaching a given node shrinks
⇒ value of lookahead is diminished
α–β pruning is much less eﬀective
TDGammon uses depth-2 search + very good Eval
≈ world-champion level
Chapter 6
28
Digression: Exact values DO matter
MAX
2.1
DICE
1.3
.9
MIN
.1
2
2
.9
3
2
3
.1
1
3
1
21
.9
4
1
4
40.9
20
4
20
.1
30
20 30 30
.9
1
1
.1
400
1 400 400
Behaviour is preserved only by positive linear transformation of Eval
Hence Eval should be proportional to the expected payoﬀ
Chapter 6
29
Games of imperfect information
E.g., card games, where opponent’s initial cards are unknown
Typically we can calculate a probability for each possible deal
Seems just like having one big dice roll at the beginning of the game∗
Idea: compute the minimax value of each action in each deal,
then choose the action with highest expected value over all deals∗
Special case: if an action is optimal for all deals, it’s optimal.∗
GIB, current best bridge program, approximates this idea by
1) generating 100 deals consistent with bidding information
2) picking the action that wins most tricks on average
Chapter 6
30
Example
Four-card bridge/whist/hearts hand, Max to play first
6
6 8
7
4
2
3
9
8
6
6
4
2
9
7
6
6
7
6
3
4
2
3
4
9
2
6
7
3
6
6
7
4
3
Chapter 6
0
31
Example
Four-card bridge/whist/hearts hand, Max to play first
MAX 6 6 8 7
MIN
4
2
9
3
MAX 6 6 8 7
MIN
4 2
9
8
3
8
6
6
4
2
6
6
4 2
7
9
9
6
6
7
4
2
3
7
6
6
7
6
3
4 2
3
4
3
9
9
6
2
2
6
4
7
6
3
6
7
3
6
7
4
3
6
6
4
0
7
0
3
Chapter 6
32
Example
Four-card bridge/whist/hearts hand, Max to play first
MAX 6 6 8 7
MIN
4
2
9
3
MAX 6 6 8 7
MIN
4 2
9
8
8
3
6
6
4
2
6
6
4 2
9
9
7
6
6
7
6
3
4
2
3
4
7
6
6
7
6
3
4 2
3
4
9
9
2
2
6
7
6
3
6
7
6
7
4
3
6
3
6
4
MAX 6 6 8 7
MIN
4 2
9
3
8
6
6
4 2
7
9
3
6
9
6
7
4 2
3
6
2
4
6
7
3
6
7
0
3
6
6
0
7
4
3
6
7
4
3
−0.5
−0.5
Chapter 6
33
Commonsense example
Road A leads to a small heap of gold pieces
Road B leads to a fork:
take the left fork and you’ll find a mound of jewels;
take the right fork and you’ll be run over by a bus.
Chapter 6
34
Commonsense example
Road A leads to a small heap of gold pieces
Road B leads to a fork:
take the left fork and you’ll find a mound of jewels;
take the right fork and you’ll be run over by a bus.
Road A leads to a small heap of gold pieces
Road B leads to a fork:
take the left fork and you’ll be run over by a bus;
take the right fork and you’ll find a mound of jewels.
Chapter 6
35
Commonsense example
Road A leads to a small heap of gold pieces
Road B leads to a fork:
take the left fork and you’ll find a mound of jewels;
take the right fork and you’ll be run over by a bus.
Road A leads to a small heap of gold pieces
Road B leads to a fork:
take the left fork and you’ll be run over by a bus;
take the right fork and you’ll find a mound of jewels.
Road A leads to a small heap of gold pieces
Road B leads to a fork:
guess correctly and you’ll find a mound of jewels;
guess incorrectly and you’ll be run over by a bus.
Chapter 6
36
Proper analysis
* Intuition that the value of an action is the average of its values
in all actual states is WRONG
With partial observability, value of an action depends on the
information state or belief state the agent is in
Can generate and search a tree of information states
Leads
♦
♦
♦
to rational behaviors such as
Acting to obtain information
Signalling to one’s partner
Acting randomly to minimize information disclosure
Chapter 6
37
Summary
Games are fun to work on! (and dangerous)
They illustrate several important points about AI
♦ perfection is unattainable ⇒ must approximate
♦ good idea to think about what to think about
♦ uncertainty constrains the assignment of values to states
♦ optimal decisions depend on information state, not real state
Games are to AI as grand prix racing is to automobile design
Chapter 6
38
Artiﬁcial Intelligence
A Modern Approach
Third Edition
PRENTICE HALL SERIES
IN ARTIFICIAL INTELLIGENCE
Stuart Russell and Peter Norvig, Editors
F ORSYTH & P ONCE
G RAHAM
J URAFSKY & M ARTIN
N EAPOLITAN
RUSSELL & N ORVIG
Computer Vision: A Modern Approach
ANSI Common Lisp
Speech and Language Processing, 2nd ed.
Learning Bayesian Networks
Artiﬁcial Intelligence: A Modern Approach, 3rd ed.
Artiﬁcial Intelligence
A Modern Approach
Third Edition
Stuart J. Russell and Peter Norvig
Contributing writers:
Ernest Davis
Douglas D. Edwards
David Forsyth
Nicholas J. Hay
Jitendra M. Malik
Vibhu Mittal
Mehran Sahami
Sebastian Thrun
Boston Columbus Indianapolis New York San Francisco Upper Saddle River
Amsterdam Cape Town Dubai London Madrid Milan Munich Paris Montreal Toronto
Delhi Mexico City Sao Paulo Sydney Hong Kong Seoul Singapore Taipei Tokyo
Pearson Education Limited
Edinburgh Gate
Harlow
Essex CM20 2JE
England
and Associated Companies throughout the world
Visit us on the World Wide Web at:
www.pearsonglobaleditions.com
© Pearson Education Limited 2016
The rights of Stuart J. Russell and Peter Norvig to be identified as the authors of this work have
been asserted by them in accordance with the Copyright, Designs and Patents Act 1988.
Authorized adaptation from the United States edition, entitled Artificial Intelligence: A Modern
Approach, Third Edition, ISBN 9780136042594, by Stuart J. Russell and Peter Norvig published
by Pearson Education © 2010.
All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, electronic, mechanical, photocopying, recording or
otherwise, without either the prior written permission of the publisher or a license permitting
restricted copying in the United Kingdom issued by the Copyright Licensing Agency Ltd, Saffron
House, 6–10 Kirby Street, London EC1N 8TS.
All trademarks used herein are the property of their respective owners. The use of any trademark
in this text does not vest in the author or publisher any trademark ownership rights in such
trademarks, nor does the use of such trademarks imply any affiliation with or endorsement of this
book by such owners.
British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library
10 9 8 7 6 5 4 3 2 1
ISBN 10: 1292153962
ISBN 13: 9781292153964
Printed and bound in Malaysia
For Loy, Gordon, Lucy, George, and Isaac — S.J.R.
For Kris, Isabella, and Juliet — P.N.
This page intentionally left blank
Preface
Artiﬁcial Intelligence (AI) is a big ﬁeld, and this is a big book. We have tried to explore the
full breadth of the ﬁeld, which encompasses logic, probability, and continuous mathematics;
perception, reasoning, learning, and action; and everything from microelectronic devices to
robotic planetary explorers. The book is also big because we go into some depth.
The subtitle of this book is “A Modern Approach.” The intended meaning of this rather
empty phrase is that we have tried to synthesize what is now known into a common framework, rather than trying to explain each subﬁeld of AI in its own historical context. We
apologize to those whose subﬁelds are, as a result, less recognizable.
New to this edition
This edition captures the changes in AI that have taken place since the last edition in 2003.
There have been important applications of AI technology, such as the widespread deployment of practical speech recognition, machine translation, autonomous vehicles, and household robotics. There have been algorithmic landmarks, such as the solution of the game of
checkers. And there has been a great deal of theoretical progress, particularly in areas such
as probabilistic reasoning, machine learning, and computer vision. Most important from our
point of view is the continued evolution in how we think about the ﬁeld, and thus how we
organize the book. The major changes are as follows:
• We place more emphasis on partially observable and nondeterministic environments,
especially in the nonprobabilistic settings of search and planning. The concepts of
belief state (a set of possible worlds) and state estimation (maintaining the belief state)
are introduced in these settings; later in the book, we add probabilities.
• In addition to discussing the types of environments and types of agents, we now cover
in more depth the types of representations that an agent can use. We distinguish among
atomic representations (in which each state of the world is treated as a black box),
factored representations (in which a state is a set of attribute/value pairs), and structured
representations (in which the world consists of objects and relations between them).
• Our coverage of planning goes into more depth on contingent planning in partially
observable environments and includes a new approach to hierarchical planning.
• We have added new material on ﬁrst-order probabilistic models, including open-universe
models for cases where there is uncertainty as to what objects exist.
• We have completely rewritten the introductory machine-learning chapter, stressing a
wider variety of more modern learning algorithms and placing them on a ﬁrmer theoretical footing.
• We have expanded coverage of Web search and information extraction, and of techniques for learning from very large data sets.
• 20% of the citations in this edition are to works published after 2003.
• We estimate that about 20% of the material is brand new. The remaining 80% reﬂects
older work but has been largely rewritten to present a more uniﬁed picture of the ﬁeld.
vii
viii
Preface
Overview of the book
NEW TERM
The main unifying theme is the idea of an intelligent agent. We deﬁne AI as the study of
agents that receive percepts from the environment and perform actions. Each such agent implements a function that maps percept sequences to actions, and we cover different ways to
represent these functions, such as reactive agents, real-time planners, and decision-theoretic
systems. We explain the role of learning as extending the reach of the designer into unknown
environments, and we show how that role constrains agent design, favoring explicit knowledge representation and reasoning. We treat robotics and vision not as independently deﬁned
problems, but as occurring in the service of achieving goals. We stress the importance of the
task environment in determining the appropriate agent design.
Our primary aim is to convey the ideas that have emerged over the past ﬁfty years of AI
research and the past two millennia of related work. We have tried to avoid excessive formality in the presentation of these ideas while retaining precision. We have included pseudocode
algorithms to make the key ideas concrete; our pseudocode is described in Appendix B.
This book is primarily intended for use in an undergraduate course or course sequence.
The book has 27 chapters, each requiring about a week’s worth of lectures, so working
through the whole book requires a two-semester sequence. A one-semester course can use
selected chapters to suit the interests of the instructor and students. The book can also be
used in a graduate-level course (perhaps with the addition of some of the primary sources
suggested in the bibliographical notes). Sample syllabi are available at the book’s Web site,
aima.cs.berkeley.edu. The only prerequisite is familiarity with basic concepts of
computer science (algorithms, data structures, complexity) at a sophomore level. Freshman
calculus and linear algebra are useful for some of the topics; the required mathematical background is supplied in Appendix A.
Exercises are given at the end of each chapter. Exercises requiring signiﬁcant programming are marked with a keyboard icon. These exercises can best be solved by taking
advantage of the code repository at aima.cs.berkeley.edu. Some of them are large
enough to be considered term projects. A number of exercises require some investigation of
the literature; these are marked with a book icon.
Throughout the book, important points are marked with a pointing icon. We have included an extensive index of around 6,000 items to make it e ...