I need help with this



Wilkes University

Question Description

(I've reviewed your results section. There needs to be more here than just the p-values of your inferential tests. You didn't share anything about the data you obtained that allowed you to perform these tests in the first place. The descriptive statistics configured from the raw data should be outlined in some way, most often people will create a figure and caption to condense it and note any distinct trends (i.e., this average is higher than that... but don't say anything is significant or proven). Also, you should not be declaring any significance. You can state where the p-value stands in regards to the alpha, but do not discuss further until the discussion section.) I did most of the work but I need you to fix it and I want you to add discussion part following the structure between the brackets , Also make sure to see the attachment

Unformatted Attachment Preview

REMEMBER that your Plant Experiment Rationale is due this week! I've attached a tentative plant list to this announcement. Here is what I need you to be sure you have in your write-up: 1. Your experimental question. Does the concentration of chemicals, specifically nitric acid and sulfuric acid affect the transpiration rate of anthurium? 2. Your tentative null/alternative hypotheses Null: The concentrations of sulfuric and nitric acid in water have no effect on the transpiration rates of Antheridium leaves. Alternative: The higher the concentrations of sulfuric and nitric acid will cause the transpiration rates of antheridium to be the lowest. 3. Your experimental design/methods. 2 trials of 1) Cut stems under water to avoid air bubbles entering the cut end of the stem 2) Fill floral tubes with 6 tubes with 6 leaves of 0.5M nitric acid test tubes (1ml HNO3, 7ml water), (2mlHNO3, 6ml water), (3mlHNO3, 5ml water), (4mlHNO3, 4ml water), (5ml HNO3, 3 ml water),(6ml HNO3, 2 ml water), (7 mlHNO3, 1 ml water) -6 tubes with 6 leaves of 0.5M sulfuric acid test tubes (1ml H2SO4 7ml water), (2ml H2SO4 6ml water), (3m H2SO4l 5ml water), (4ml H2SO4 4ml water)H2SO4,(5ml H2SO4 3ml water), (6ml H2SO4 2ml water), (7ml H2SO4 2ml water) 3) Put cut end of stem into the hole in middle of cap-- absolute minimum 4) Place clay over gap to create airtight stem the stem of the floral tube 5) Placed in fume hood for approx 2 hours- recording start and end time- allowing stem to transpire 6) Weight entire unit again after transpiration 7) Determine mass of water lost- volume- calculate water loss per time 8) Use clear grid to estimate leaf area- calculate water loss per time per leaf area 9) Repeat for second trial First cut 8 stems of antheridium leaves under water, to avoid air bubbles entering the cut end of the stem. Meanwhile, fill 4 floral tubes with the 4 cut leaves and put ranging amounts of the same 0.5M nitric acid in each test tube. Each tube will have the same intensity of acid, just different amounts (mL) of the acid. ----These ranging amounts will begin with 1mL and end with 7mL of HNO3. Each tube will have 8mL of solution; remaining space in tube will be filled with dH2O Tube 1- (1ml HNO3, 7ml water), (2mlHNO3, 6ml water), (3mlHNO3, 5ml water), (4mlHNO3, 4ml water), (5ml HNO3, 3 ml water),(6ml HNO3, 2 ml water), (7 mlHNO3, 1 ml water) (control—but idk cuz we have a whole control section) -4 tubes with 4 leaves of 0.5M sulfuric acid test tubes (1ml H2SO4 7ml water), (2ml H2SO4 6ml water), (3m H2SO4l 5ml water), (4ml H2SO4 4ml water)H2SO4,(5ml H2SO4 3ml water), (6ml H2SO4 2ml water), (7ml H2SO4 2ml water) (control***) Once tubes are put together, place the cut end of the stem into the hole in the middle of the cap. Then place clay over the gap to create an airtight stem the stem of the floral tube. Before placing in the fume hood, weigh the mass of each unit on valance. Then placed in a fume hood for approximately 2 hours. Make sure to record start and end time; this will allow the stem to transpire. After transpiration, weight the entire unit again. The mass data will allow us to determine the mass of water lost and calculate water loss (volume mL) per time using time recorded. Finally, use the clear grid to estimate leaf area, calculate water loss per time per leaf area. Repeat for the second trial, not simultaneously, after the first trial is complete. 4. Your materials list - walk through your experiment, start to finish, and try to put in everything you'll need. For your plant choices, give me your #1 choice and at least one alternate choice. Be mindful of how much of one plant you would need. - 16 Test Tubes Beakers Stir rods Graduated cylinders Digital pipet Plastic test tube Caps Clay Test tube Racks Bowl Water Weight boats Electronic balance 0.5cm Clear Grid Sheet 0.5M Nitric acid and 0.5M sulfuric acid 20 Antheridium leaves Fume Hood 5. Lastly, cite the sources that you have utilized so far in developing your hypothesis and experimental design. Izuta, T. Ecophysiological responses of Japanese forest tree species to ozone, simulated acid rain and soil acidification. J. Plant Res. 111, 471–480 (1998). https://doi.org/10.1007/BF02507781 Schaeffer, S., Williams, D., & Goodrich, D. (2000). Transpiration of cottonwood/willow forest estimated from sap flux. Agricultural and forest meteorology, 105, 257 doi: 10.1016/S0168-1923(00)00186-6 Bingham, EUGENE C., and S. B. Stone. "A Study of the Fluidity Relationships in the System, Nitric Acid, Sulphuric Acid, and Water." The Journal of Physical Chemistry 27.8 (2002): 701-738. Graham, Thomas. "XIX. On liquid transpiration in relation to chemical composition." Proceedings of the Royal Society of London 11 (1862): 381-384. Esch, A., and K. Mengel. "Combined effects of acid mist and frost on the water status of young spruce trees (Picea abies)." Chemosphere 36.4-5 (1998): 645-650. Elibox, W., and P. Umaharan. "Cultivar differences in the deterioration of vase-life in cut-flowers of Anthurium andraeanum is determined by mechanisms that regulate water uptake." Scientia horticulturae 124.1 (2010): 102-108. Lal, Nand, and Neerja Srivastava. “Phytoremediation of Toxic Explosives.” Plant Adaptation and Phytoremediation, May 2016, pp. 383–397., doi:10.1007/978-90-4819370-7_17. Mujaffar, S., and C. K. Sankat. "Transpiration rate of cut anthuriums by a hygrometric method." International agrophysics 14.3 (2000): 307-310. Results: During the ANOVA test, the p value was 0.03, meaning results were significant between the means of the sulfuric acid, nitric acid and control groups. When using the t test to compare the two acids the p value was not significant, the p value was 0.33. When comparing the nitric to control p value was significant, the p value was 0.02. When comparing the sulfuric control the p value was significant, the p value was 0.0004. Our data is based upon a 5% percent significance. Introduction: Mention the most important references and state the research problem The final paragraph describes the rationale for the current study and should contain the research question and the hypothesis. A common error of novice authors is to forget to include the hypothesis 1. What is the problem or issue? Mention 3–5 of the most important references. 2. What is the importance of the problem or issue? You can include a few recent references here to demonstrate that research is active on the subject. 3. State your research question and hypothesis. In today’s world, there is an increase in global warming due to human behavior; issues that negatively affect the environment. For example, acid rain plays a major role in the decline of environments. According to the EPA, “Acid rain results when sulfur dioxide and nitrogen oxides are emitted into the atmosphere and transported by wind and air currents.” The SO2 and HNO3 react with water, oxygen and other chemicals to form sulfuric and nitric acids. These acids then mix with water and other materials before falling into the soil. The acidity of acid rain is measured using the common acid and base scale. The lower a substance's pH (less than 7), the more acidic it is; the higher a substance's pH (greater than 7), the more alkaline it is. Normal rain has a pH of about 5.6, while acid rain usually has a pH between 4.2 and 4.4. This can be harmful to the environment, specifically plants. Acid rain leaches aluminum from the soil and removes minerals and nutrients from the soil, necessary for growth. Acid rain also decreases nutrients from trees’ foliage, leaving them with brown or dead leaves and needles. The trees are then less able to absorb sunlight, which makes them weak. Acidic rain particles seep into the leaf tissue through the cuticle and produce marked effects on plants. Acid rain generally decreases the growth of plants by stimulating abnormalities in metabolism of the plants, like transpiration rates. Nitrogen and sulphur metabolism are exceptional cases of promoting growth as well. By measuring the transpiration rate of a stem, we can determine the effects of acid rain. Since transpiration is vital to the proper functioning of the plant, it is important to understand the effect of environmental conditions such as global warming and acid rain on plant physiology. There are studies worldwide being conducted trying to develop plants, mostly crops, suited to acid rain and understand its effects on plant growth and reproduction. According to a study by the University of Forestry after performing an experiment on a few different species, and sulfuric acid solutions, it shows that the “acid rain” had adverse effects on the plants in a very low concentration. However the experiment also showed that some plants are more vulnerable to the acid rain than other plants (Popova and Petrichev). Acid rain not only causes adverse effects to plants, but to whole ecosystems as well. Studies have shown that acid rain can also change the soil fauna, and thus disrupt the underground ecosystem (Wei et al). Unfortunately, even knowing all this information acid rain continues to receive less attention than it should. Acid rain is not only harmful to plants, and ecosystems, but people as well. Acid rain is created through pollution. And according to the United States Environmental Protection Agency, this pollution can form tiny particles that can get into people’s lungs and cause tremendous health issues, such as pneumonia and bronchitis. In this experiment, we are specifically measuring and focusing on transpiration rates, however this will help to develop and understand the effects of acid rain on plants. Specifically we are testing to see if greater amounts of nitric and sulfuric acid will affect transpiration rates of antheridium. Acid rain is a great indicator in determining the amount of pollution in our world and if we can measure and monitor the effects on the environment, we are one step closer to understanding ways to stop and adapt to these conditions. In fact, acid rain is one of the most severe environmental issues globally (Wei et al). During this experiment, our data will prove if greater amounts of chemicals, specifically nitric acid and sulfuric acid affect the transpiration rate of an antheridium. If there is a higher concentration and amount of sulfuric and nitric acid, then the transpiration rate of antheridium will be low. Acid Rain and Transpiration rate study i found idk but it was lowkey useful for the intro https://www.researchgate.net/publication/310954525_Effects_of_Acid_Rain_on_Plant _Growth_and_Development EPA, Environmental Protection Agency, www3.epa.gov/acidrain/education/site_students/whyharmful.html. Lal, Nand, and Neerja Srivastava. “Phytoremediation of Toxic Explosives.” Plant Adaptation and Phytoremediation, May 2016, pp. 383–397., doi:10.1007/978-90-481-9370-7_17. Popova TP, Petrova TE, Petrichev M, Valyova M. Action of activated waters on plants after adverse chemical effects, imitating acid rain. Bulgarian Journal of Agricultural Science. 2019;25(4):638-645. http://libraryaccess.kings.edu:2079/login.aspx?direct=true&db=a9h&AN=138188931&site=ehos t-live. Accessed April 11, 2020. Wei H, Liu W, Zhang J, Qin Z. Effects of simulated acid rain on soil fauna community composition and their ecological niches. Environmental pollution (Barking, Essex : 1987). 2017;220(Pt A):460-468. doi:10.1016/j.envpol.2016.09.088. 1 Style Guide for Writing in Biology compiled from Jan A. Pechenik’s A Short Guide to Writing about Biology 8th Ed. Eleven Major Rules for Preparing a First Draft 1. Work to understand your sources. 2. Don’t quote from your sources.  Describe what others have done and what they found, but do so in your own words. 3. Don’t plagiarize.  Submitting anyone else’s work under your own name is plagiarism, even if you alter some words or reorder some sentences.  Presenting someone else’s thoughts or ideas as your own is also plagiarism.  Take notes in ways that minimize the likelihood of plagiarism. 4. Think about where you are going before you begin to write. 5. Practice summarizing information. 6. Write to illuminate, not to impress. 7. Write for your classmates and for your future self. 8. Support all statements of fact and opinion with evidence. 9. Always distinguish fact from possibility. 10. Allow time for revision. 11. Back up your drafts every few minutes to your hard drive. Six Major Rules for Developing Your Final Draft 1. Stick to the point.  Delete any irrelevant information, no matter how interesting it is to you. 2. Say exactly what you mean. 3. Never make the reader go back and reread to understand what you are saying.  Try to take readers by the hand in your first paragraph and lead them through to the end, line-by-line, and paragraph-by-paragraph. 2  Link sentences carefully, using transitional words, such as, therefore, in contrast, etc., or by repeating key words so that a clear and logical argument is developed.  Avoid casual, inaccurate use of the words it, they, and their. 4. Don’t make readers work harder than they have to.  If there is interpreting to be done, you must be the one to do it. For example, never write something like: The difference in absorption rates is quite clearly shown in Table 1. 5. Be concise.  Give all the necessary information but avoid using more words thaDeve you need for the job at hand. 6. Don’t be teleological.  Don’t attribute a sense of purpose to other living things, especially when discussing evolution. Nine Finer Points: The Easy Stuff 1. Abbreviate units of measurement that are preceded by numbers.  Do not put periods after unit symbols, and always use the same symbol for all values regardless of quantity: 1 mm, 50 mm; 1 hr.; 1 g 2. Always underline or italicize species names, as in Homo sapiens.  Genus is capitalized (Homo) and species is not (sapiens).  Once you have the full name in the report the name can be abbreviated (H. sapiens). 3. Don’t use formal scientific names to refer to individuals of a species.  “Black-tailed prairie dogs (Cynomys ludovicianus)…” 4. Do not capitalize common names.  Examples: monarch butterfly, lowland gorillas, and fruit fly. 5. When listing references at the end of a sentence, put the period after the references. 6. Capitalize the names of taxonomic groups (clades) above the level of genus, but not the names of the taxonomic categories themselves.  For example, insects belong to the phylum Arthropoda and the class Insecta. 7. Remember that the word data is plural.  The singular is datum.  “The data are lovely” (not “The data is lovely”). 8. Pay attention to form and format: Appearances can be deceiving.  Leave margins of about an inch and a half on the left and right sides of the page and about an inch at the top and bottom of each page.  Double-space your typing.  Use Times New Roman font, 12 pt. 3 9. Put your name and the date at the top of each assignment, and number all pages. The Last, but Main Part: Revise, revise, revise; edit, edit, edit; proofread, proofread… Components of the Research Report A research report is typically divided into 6 major sections: 1. Abstract. In the Abstract, you summarize the problem addressed, why the problem was addressed, your approach to the problem, and the major findings and conclusions of your study. This is probably the most difficult part of the report to write well and it summarizes the entire report, so save it for last. 2. Introduction. The Introduction tells the reader why the study was undertaken, gives a brief summary of the study or relevant background facts, and leads to a statement of the specific problem being addressed. If appropriate, also describe the specific hypotheses that you set out to test, and the basis for those hypotheses. 3. Materials and Methods. This section is your reminder of what you did, and it also serves as a set of instructions for anyone wishing to repeat your study in the future. 4. Results. This is the centerpiece of your report. What were the major findings of the study? Present the data or summarize your observations using graphs and tables to reveal any trends you found. Point out major trends to the reader. If you make good use of your tables and graphs, the results can usually be presented in only 1 or 2 paragraphs of text; one picture is worth quite a few words. Avoid interpreting the data in this section. 5. Discussion. How do your results relate to the goals of the study, as stated in your Introduction, and how do they relate to the results that might have been expected from background information obtained in lectures, textbooks, or outside reading? Do your results support or argue against the hypothesis presented in your Introduction? What new hypotheses might now be formulated, and how might these hypotheses be tested? This section is typically the longest part of the report. 6. Literature Cited (“References”). This section includes the full citations for any references that you may have cited in your report. Double-check your sources to be certain they are listed correctly; this list of citations will permit the interested reader to confirm the accuracy of any factual statements you make and, often, help them to understand the basis for your interpretations of the data. 4 Where to Start: Start by working on either the Materials and Methods section or the Results section. Because the Materials and Methods section requires the least mental effort, completing it is a good way to overcome inertia. Writing the Materials and Methods Section Results are meaningful in science only if they can be obtained over and over, whenever the experiment is repeated. And because the results of any study depend to a large extent on the way the study was done, it is essential that you describe your methods so that your experiment can be repeated in all its essential details.  Mention each new material as you discuss what you did with it.  Begin by listing all the factors that might have influenced your results.  You must say what you did, but you should freely refer to your laboratory manual handouts in describing how you did it.  Mention why particular steps were taken whenever you think it might not be obvious.  It is usually appropriate to include any formulas used in analyzing your data.  Use informative subheadings to help organize and present your material by topic.  Uninformative: Field experiment  Informative: Occupancy of damaged and intact shells in the field  Uninformative: Shell choice  Informative: Effect of shell condition on shell choice in the laboratory  Two subsections commonly included at the end of the Materials and Methods section are “Data Analysis” and a description of your study system or organism.  Make sure it is written in past tense. Model Materials and Methods Section Obtaining and Maintaining Worms The polychaete worms used in this study were Nereis virens, freshly collected from Nahant, MA, and ranging in length between 10 and 12 cm. All treatments were performed at room temperature, approximately 21 °C, on April 15, 2011. One hundred ml of full-strength seawater was added to each of six 200-ml glass jars these jars served as controls, to monitor worm weight in the absence of any salinity change. Another 6 jars were filled with 100 ml of seawater diluted by 50% with distilled water. Monitoring Water Gain and Loss Twelve polychaetes were quickly blotted with paper towels to remove adhering water and were then weighed to the nearest 0.1 g using a Model MX-200 Fisher/Ainsworth balance. Each worm was then added to one of the jars of seawater. Blotted worm weights were later determined 30, 60, and 120 minutes after the initial weights were taken. Determining Osmotic Concentration The initial and final osmotic concentrations of all test solutions wer ...
Student has agreed that all tutoring, explanations, and answers provided by the tutor will be used to help in the learning process and in accordance with Studypool's honor code & terms of service.

This question has not been answered.

Create a free account to get help with this and any other question!