Volume of A Sphere and Method of Cylindrical Shells Mathematics Questions

User Generated

aben_rkg

Mathematics

Description

Hey there😃

all the requirement on the PDF file. it's 10 questions and it has to be on word file

Unformatted Attachment Preview

#2. Derive the volume of a sphere by revolving the semi-circle defined by y = r 2 − x 2 about the x-axis where r is the (fixed) radius if the semicircle. #3. Find the volume of the cap of the sphere of radius r. The height of the cap is h. (See picture). #4. Use the method of cylindrical shells to find the volume of the solid torus indicated in the figure below. #5. Evaluate ïƒČe a sin(b )d where a, b  #6. Evaluate the integral . ïƒČ ln(ax + b)dx where a, b  . #7. Evaluate the integral ïƒČ sin(ln x)dx #8. Evaluate the integral ïƒČx 2 cos(mx)dx where m  + . #9. Evaluate ïƒČr 2 ln(r )dr #10. Evaluate the integral
Purchase answer to see full attachment
User generated content is uploaded by users for the purposes of learning and should be used following Studypool's honor code & terms of service.

Explanation & Answer

Attached.

Solution
Intersection points:
𝑩 2 − 4𝑩 = 3𝑩 − 𝑩 2
𝑩 2 + 𝑩 2 − 4𝑩 − 3𝑩 = 0
2𝑩 2 − 7𝑩 = 0
𝑩(2𝑩 − 7) = 0 → 𝑩 = 0

𝑩(𝑩 − 4) = 𝑩(3 − 𝑩)
𝑩−4=3−𝑩
𝑩−4−3+𝑩 = 0

2𝑩 = 7 → 𝑩 =

7
2

𝑏

𝐮 = ∫[𝑓(đ‘„) − 𝑔(đ‘„)]đ‘‘đ‘„
𝑎
7
2

𝐮 = ∫ 3𝑩 − 𝑩 2 − (𝑩 2 − 4𝑩) 𝑑𝑩
0
7
2

= ∫ 3𝑩 − 𝑩 2 − 𝑩 2 + 4𝑩 𝑑𝑩
0
7
2

= ∫ −2𝑩 2 + 7𝑩 𝑑𝑩
0

7
2 3 7 2 2
= [− 𝑩 + 𝑩 ]
3
2
0
2 7 3 7 7 2
=− ( ) + ( ) −0
3 2
2 2

𝑹 = 𝟏𝟒. 𝟐𝟗

#2. Derive the volume of a sphere by revolving the semi-circle defined by
𝑩 = √𝑟 2 − đ‘„ 2
circle.

Solution

about the x-axis where r is the (fixed) radius if the semi-

đ‘„2

𝑟

2

𝑟

𝑉 = ∫ 𝜋𝑓(đ‘„)2 đ‘‘đ‘„ = ∫ 𝜋 (√𝑟 2 − đ‘„ 2 ) đ‘‘đ‘„ = ∫ 𝜋(𝑟 2 − đ‘„ 2 )đ‘‘đ‘„
đ‘„1

−𝑟

= 𝜋 [𝑟 2 đ‘„ −

= 𝜋 [(𝑟 3 −

−𝑟

đ‘„3 𝑟
]
3 −𝑟

𝑟3
𝑟3
) − (−𝑟 3 + )]
3
3

đ‘œ=

𝟒 𝟑
𝝅𝒓
𝟑

#3. Find the volume of the cap of the sphere of radius r. The height of the
cap is h. (See picture).

Solution
Disk Method
𝑏

𝑉 = ∫ 𝜋(𝑅𝑎𝑑𝑖𝑱𝑠)2 𝑑𝑩
𝑎
𝑟

𝑉 = ∫ 𝜋(𝑅𝑎𝑑𝑖𝑱𝑠)2 𝑑𝑩
𝑟−ℎ

đ‘„ 2 = 𝑟 2 − 𝑩 2 → đ‘„ = √𝑟 2 − 𝑩 2 → 𝑅𝑎𝑑𝑖𝑱𝑠

𝑟

𝑉 = 𝜋 ∫ 𝑟 2 − 𝑩 2 𝑑𝑩
𝑟−ℎ

1
𝑟
= 𝜋 (𝑟 2 𝑩 − 𝑩 3 )
3
𝑟−ℎ
1
1
= 𝜋 (𝑟 2 (𝑟) − 𝑟 3 ) − 𝜋 (𝑟 2 (𝑟 − ℎ) + (𝑟 − ℎ)3 )
3
3
2

(𝑟 − ℎ)
2
= 𝜋 ( 𝑟 3 + (𝑟 − ℎ) (−𝑟 2 +
))
3
3

2
𝑟 2 2𝑟ℎ ℎ2
= 𝜋 ( 𝑟 3 + (𝑟 − ℎ) (−𝑟 2 + −
+ ))
3
3
3
3
2
2𝑟 2 2𝑟ℎ ℎ2
= 𝜋 ( 𝑟 3 + (𝑟 − ℎ) (−
−
+ ))
3
3
3
3
2 3 2 3 2 2
1 2 2 2
2 2 ℎ3
= 𝜋 ( 𝑟 − 𝑟 − 𝑟 ℎ + 𝑟ℎ + 𝑟 ℎ + 𝑟ℎ − )
3
3
3
3
3
3
3

𝟏
đ‘œ = 𝝅 (𝒓𝒉𝟐 − 𝒉𝟑 )
𝟑

#4. Use the method of cylindrical shells to find the volume of the solid
torus indicated in the figure below.

Solution
𝑅+𝑟

𝑉 = ∫ 2đœ‹đ‘„ . 2√𝑟 2 − (đ‘„ − 𝑅)2 đ‘‘đ‘„ ; 𝑱 = đ‘„ − 𝑅
𝑅−𝑟
𝑟

= ∫ 4𝜋(𝑱 + 𝑅)√𝑟 2 − 𝑱2 𝑑𝑱
−𝑟
𝑟

𝑟

= 4𝜋𝑅 ∫ √𝑟 2 − 𝑱2 𝑑𝑱 + 4𝜋 ∫ 𝑱√𝑟 2 − 𝑱2 𝑑𝑱
−𝑟

−𝑟

𝑟

∫ √𝑟 2 − 𝑱2 𝑑𝑱 ; 𝐮𝑝𝑝𝑙𝑩 𝑇𝑟𝑖𝑔 𝑆𝑱𝑏𝑠𝑡𝑖𝑡𝑱𝑡𝑖𝑜𝑛: 𝑱 = 𝑟𝑠𝑖𝑛(𝑣) ; 𝑑𝑱 = 𝑟𝑐𝑜𝑠(𝑣)𝑑𝑣
−𝑟

2

= ∫ √𝑟 2 − (𝑟𝑠𝑖𝑛(𝑣)) 𝑟𝑐𝑜𝑠(𝑣)𝑑𝑣

= ∫ 𝑟 2 ïżœ...


Anonymous
Great! 10/10 would recommend using Studypool to help you study.

Studypool
4.7
Trustpilot
4.5
Sitejabber
4.4

Related Tags