solve the algebra equation.

Anonymous
timer Asked: Sep 12th, 2014
account_balance_wallet $5

Question Description

solve the equation by completing the square.

x^2 + 2x = 5

Tutor Answer

Wallace H
School: Rice University

x^2 + 2x = 5

First, before we can complete the square, we need to make sure that the x^2 and x terms are on the same side in order respectively, and the constant number (the number with no variable next to it) is on the other side of the equal sign.


x^2 + 2x = 5        <On the left side the x^2 term comes first and then the x term.  And the constant number is

                              on the right side.  Everything is ready for completing the square>


Next, we will let the variable 'b' represent the coefficient of x-term (regular x, not x^2).

x^2 + 2x = 5

The x-term is 2x,  and its coefficient is 2.   Therefore  b = 2


Third, find the value of (b/2)^2

            (b/2)^2    =    (2/2)^2                <Since b = 2, we substitute b with 2>

                                  1^2                     <Evaluate inside the parenthesis first>

                                   1


Now, we are ready to complete the square to solve the equation.  The process is done as follows:

         x^2 + 2x = 5                   <Given equation>

         x^2 + 2x + 1  =  5 + 1     <Add both sides by your value of (b/2)^2 >

         x^2 + 2x + 1  =  6            <Evaluate the right side>

        (x+1)(x+1) = 6                  <The left side should represent a perfect square, so we can factor this side>

        (x+1)^2 = 6                       <x-expression must be in the form  (a + b)^2>

        sqrt[(x+1)^2] = sqrt(6)       <Take the square root of both sides>

        |x+1|  =  sqrt(6)                <Taking the square root of a squared expression cancels the exponent and the

                                                   inside expression is put in an absolute value expression>

       Keep in mind that if you have an absolute value expression set equal to a positive, we can solve for two cases.  A positive case, and a negative case.

                                          |x+1| = sqrt(6)

                       x + 1 = sqrt(6)       or       x + 1 = -sqrt(6)              <Two cases to solve for>

                  x + 1 - 1 = sqrt(6)  - 1     or      x + 1 - 1 =  -sqrt(6) - 1   <In both cases subtract both sides by 1>

                          x = sqrt(6) - 1        or      x = -sqrt(6) - 1

                          x = -1 + sqrt(6)      or     x = -1 - sqrt(6)


SOLUTION:    x = -1 + sqrt(6)     or    x = -1 - sqrt(6)


                 

flag Report DMCA
Review

Anonymous
Thanks, good work

Brown University





1271 Tutors

California Institute of Technology




2131 Tutors

Carnegie Mellon University




982 Tutors

Columbia University





1256 Tutors

Dartmouth University





2113 Tutors

Emory University





2279 Tutors

Harvard University





599 Tutors

Massachusetts Institute of Technology



2319 Tutors

New York University





1645 Tutors

Notre Dam University





1911 Tutors

Oklahoma University





2122 Tutors

Pennsylvania State University





932 Tutors

Princeton University





1211 Tutors

Stanford University





983 Tutors

University of California





1282 Tutors

Oxford University





123 Tutors

Yale University





2325 Tutors