Evolution Lab Report Form
There are three parts to this lab. In part one, you will explore the Fossil Record site, sketch a fossil, and
write a short paragraph about the fossil and one of the sites you visited in “A Geologic Journey.” In part
two, you will create a phylogenic tree, print and cut out all the caminalcules (you don’t have to be precise,
and I recommend leaving the numbers attached), and glue the caminalcules to the tree following the
instructions provided. In part three, use the tree to answer the six problems at the end of this document.
Part 1: Fossil Record
Fossil Record:
http://www.classzone.com/books/earth_science/terc/content/investigations/es3002/es3002page01.cfm
1.
Click the links and work through the screens at the Fossil Record site to learn more about fossils
and their role as evidence for evolution.
2.
Visit each of the sites referenced on “A Geologic Journey” (screen 4). Unfortunately, some of the
links on the map do not work.
Write a short paragraph about one of the sites you “visited” on the map.
3.
On screen 6, “Explore More Fossils,” visit the links and explore them.
a) Make a sketch of your favorite fossil.
b) Write a one-paragraph description to accompany your sketch.
© KC Distance Learning
Part 2: Caminalcules as a Model of the Fossil Record
First, read about the Caminalcules, which were imaginary animals invented by the late University of
Kansas evolutionary biologist Joseph Camin. Then create the phylogenic tree for Caminalcules.
Caminalcules as a Model of the Fossil Record
Caminalcules were imaginary animals invented by the late University of Kansas evolutionary
biologist, Joseph Camin. They make ideal model organisms for introducing students to
evolution. In this lab, you will construct an evolutionary history of the Caminalcules using fossil
species. In the process of doing this exercise, you are introduced to concepts, such as convergent
evolution and vestigial structures.
As a consequence of Darwin's work, taxonomic classifications must be actual reflections of the
evolutionary history of the group being studied. For example, Linnaeus put humans and wolves
in the class Mammalia, within the phylum Chordata, because they share certain characteristics
(e.g., backbone, hair, etc.). We now interpret this similarity as reflecting the shared evolutionary
history of both species through their descent from a common ancestor. Generally speaking, the
more resemblance between two species, the more recently they diverged from their common
ancestor. Thus, when we say that the human and wolf are more closely related to each other than
either is to the honeybee, we mean that they share a common ancestor that is not shared with the
honeybee.
Another way of showing the evolutionary relationship between organisms is in the form of a
phylogenetic tree (Gk. phylon, stock, tribe + genus, birth, origin):
© KC Distance Learning
The vertical axis in this figure is the timeline, typically shown over millions of years. The
separation of two lines indicates when that lineage split from each other, despite their common
ancestor. For example, the diagram shows us that mammals diverged from reptiles about 150
million years ago. The most recent common ancestor shared by mammals and reptiles is
indicated by point A in the diagram. The horizontal axis represents, in a general way, the amount
of divergence that has occurred between different groups; the greater the distance, the more
divergence has happened and the further back in time is the common ancestor. Since they share a
fairly recent ancestor, species within the same group (such as the class Mammalia) tend to be
closer to each other at the top of the tree than they are to members of other groups.
Several types of evidence can elucidate the evolutionary relationship between organisms. One
approach is to compare living species. The greater the differences between them, the longer ago
they presumably diverged. There are, however, pitfalls with this approach. Occasionally, species
resemble each other because they independently evolved similar structures in response to similar
environments or ways of life, not because of a recent common ancestor. This is called
convergent evolution; distantly related species seem to have converged on a common set of
adaptations. Examples of convergent evolution include the wings of bats, birds, and insects, or
the streamlined shape of dolphins and fish. At first glance, it might appear that dolphins are
fish. However, further examination shows this resemblance is superficial, resulting from the fact
that dolphins and fish have adapted to the same environment. The presence of hair, the ability to
lactate and homeothermy clearly demonstrate that dolphins are mammals. Fish lack these
features.
© KC Distance Learning
The fossil record can also be helpful for constructing phylogenetic trees. For example, bears
were once thought to be within the order Carnivora. Recently discovered fossils, however, show
that they actually diverged from the Canidae (wolves, etc.) fairly recently. The use of fossils is
not without its problems, however. The most notable, and perhaps greatest problem, is the
incomplete nature of the fossil record. This is more of a problem for some organisms than
others. For example, organisms with shells or bony skeletons are more likely to be preserved
than those without hard body parts.
Construct a phylogenetic tree for the Caminalcules
1. Obtain a large sheet of paper on which to construct a phylogenetic tree for the
Caminalcules.
2. Use a meter stick to draw 20 equally spaced horizontal lines on the paper.
Use each line to indicate an interval of one million years.
Label each line so that the one at the bottom of the paper represents an age of 19
million years and the top line represents the present (0 years).
3. Download the Caminalcules Handout here.
4. Cut out all the Caminalcules (including the living species).
5. Put them in piles according to their age (the number in parentheses indicates age in
millions of years).
6. Beginning with the oldest fossils, arrange the Caminalcules on the tree according to their
evolutionary relationship. Remember, the oldest forms are at the bottom of the tree.
Hints, Suggestions and Warnings
© KC Distance Learning
a. Use a pencil to faintly draw lines indicating the path of evolution. Only after you are sure
of the correctness of your tree should you glue the figures in place and darken the lines.
b. Branching should involve only two lines at a time:
Like this
Not this
c. Some living forms are also found in the fossil record.
d. There are gaps in the fossil record for some lineages. Also, some species went extinct
without leaving any descendants.
e. The Caminalcules numbering is random; the numbers provide no clues to evolutionary
relationships.
f. There is only one correct phylogenetic tree in this exercise. This is because of the way
that Joseph Camin derived his imaginary animals. He started with the most primitive
form (#73) and gradually modified it using a process that mimics evolution in real
organisms. After you complete your phylogeny, compare it with Camin's original.
Part 3: Problems
1.
You will notice that some lineages (e.g. the descendants of species 56) branched many times
and are represented by many living species. What type of ecological conditions would result in
the rapid diversification of some lineages? (A real world example would be the diversification of
the mammals at the beginning of the Cenozoic, right after the dinosaurs went extinct.)
2.
Some lineages (e.g. the descendants of species 58) changed very little over time. A good
example of this would be “living fossils” like the horseshoe crab or cockroach. What is an
example of an ecological condition that might cause this to happen?
3.
Some Caminalcules went extinct without leaving descendents. In the real world, what factors
might increase or decrease the probability of a species going extinct?
4.
Find one example of convergent evolution among the Caminalcules. This means finding cases
where two or more species have a similar characteristic that evolved independently in each
lineage. The wings of bats, birds and bees are an example of convergence since the three
groups did not inherit the characteristic from their common ancestor. Write your answers in
but their most recent common
complete sentences (e.g. “Species x and y both have
ancestor, z, did not”).
5.
Describe one example of vestigial structures that you can find among the Caminalcules. These
are structures that have been reduced to the point that they are virtually useless. Ear muscles
and the tailbones are examples of vestigial structures in our own species.
© KC Distance Learning
Illustrate your argument with vestigial structures found in humans or other real species.
6.
Explain how vestigial structures provide clues about a species’ evolutionary past. Illustrate your
argument with vestigial structures found in humans or other real species.
7.
© KC Distance Learning
Purchase answer to see full
attachment