Evolution, biology Lab Report help

User Generated

Yvmtnepvn

Science

Description

Do not bid over $20 

Unformatted Attachment Preview

Evolution Lab Report Form There are three parts to this lab. In part one, you will explore the Fossil Record site, sketch a fossil, and write a short paragraph about the fossil and one of the sites you visited in “A Geologic Journey.” In part two, you will create a phylogenic tree, print and cut out all the caminalcules (you don’t have to be precise, and I recommend leaving the numbers attached), and glue the caminalcules to the tree following the instructions provided. In part three, use the tree to answer the six problems at the end of this document. Part 1: Fossil Record Fossil Record: http://www.classzone.com/books/earth_science/terc/content/investigations/es3002/es3002page01.cfm 1. Click the links and work through the screens at the Fossil Record site to learn more about fossils and their role as evidence for evolution. 2. Visit each of the sites referenced on “A Geologic Journey” (screen 4). Unfortunately, some of the links on the map do not work. Write a short paragraph about one of the sites you “visited” on the map. 3. On screen 6, “Explore More Fossils,” visit the links and explore them. a) Make a sketch of your favorite fossil. b) Write a one-paragraph description to accompany your sketch. © KC Distance Learning Part 2: Caminalcules as a Model of the Fossil Record First, read about the Caminalcules, which were imaginary animals invented by the late University of Kansas evolutionary biologist Joseph Camin. Then create the phylogenic tree for Caminalcules. Caminalcules as a Model of the Fossil Record Caminalcules were imaginary animals invented by the late University of Kansas evolutionary biologist, Joseph Camin. They make ideal model organisms for introducing students to evolution. In this lab, you will construct an evolutionary history of the Caminalcules using fossil species. In the process of doing this exercise, you are introduced to concepts, such as convergent evolution and vestigial structures. As a consequence of Darwin's work, taxonomic classifications must be actual reflections of the evolutionary history of the group being studied. For example, Linnaeus put humans and wolves in the class Mammalia, within the phylum Chordata, because they share certain characteristics (e.g., backbone, hair, etc.). We now interpret this similarity as reflecting the shared evolutionary history of both species through their descent from a common ancestor. Generally speaking, the more resemblance between two species, the more recently they diverged from their common ancestor. Thus, when we say that the human and wolf are more closely related to each other than either is to the honeybee, we mean that they share a common ancestor that is not shared with the honeybee. Another way of showing the evolutionary relationship between organisms is in the form of a phylogenetic tree (Gk. phylon, stock, tribe + genus, birth, origin): © KC Distance Learning The vertical axis in this figure is the timeline, typically shown over millions of years. The separation of two lines indicates when that lineage split from each other, despite their common ancestor. For example, the diagram shows us that mammals diverged from reptiles about 150 million years ago. The most recent common ancestor shared by mammals and reptiles is indicated by point A in the diagram. The horizontal axis represents, in a general way, the amount of divergence that has occurred between different groups; the greater the distance, the more divergence has happened and the further back in time is the common ancestor. Since they share a fairly recent ancestor, species within the same group (such as the class Mammalia) tend to be closer to each other at the top of the tree than they are to members of other groups. Several types of evidence can elucidate the evolutionary relationship between organisms. One approach is to compare living species. The greater the differences between them, the longer ago they presumably diverged. There are, however, pitfalls with this approach. Occasionally, species resemble each other because they independently evolved similar structures in response to similar environments or ways of life, not because of a recent common ancestor. This is called convergent evolution; distantly related species seem to have converged on a common set of adaptations. Examples of convergent evolution include the wings of bats, birds, and insects, or the streamlined shape of dolphins and fish. At first glance, it might appear that dolphins are fish. However, further examination shows this resemblance is superficial, resulting from the fact that dolphins and fish have adapted to the same environment. The presence of hair, the ability to lactate and homeothermy clearly demonstrate that dolphins are mammals. Fish lack these features. © KC Distance Learning The fossil record can also be helpful for constructing phylogenetic trees. For example, bears were once thought to be within the order Carnivora. Recently discovered fossils, however, show that they actually diverged from the Canidae (wolves, etc.) fairly recently. The use of fossils is not without its problems, however. The most notable, and perhaps greatest problem, is the incomplete nature of the fossil record. This is more of a problem for some organisms than others. For example, organisms with shells or bony skeletons are more likely to be preserved than those without hard body parts. Construct a phylogenetic tree for the Caminalcules 1. Obtain a large sheet of paper on which to construct a phylogenetic tree for the Caminalcules. 2. Use a meter stick to draw 20 equally spaced horizontal lines on the paper. Use each line to indicate an interval of one million years. Label each line so that the one at the bottom of the paper represents an age of 19 million years and the top line represents the present (0 years). 3. Download the Caminalcules Handout here. 4. Cut out all the Caminalcules (including the living species). 5. Put them in piles according to their age (the number in parentheses indicates age in millions of years). 6. Beginning with the oldest fossils, arrange the Caminalcules on the tree according to their evolutionary relationship. Remember, the oldest forms are at the bottom of the tree. Hints, Suggestions and Warnings © KC Distance Learning a. Use a pencil to faintly draw lines indicating the path of evolution. Only after you are sure of the correctness of your tree should you glue the figures in place and darken the lines. b. Branching should involve only two lines at a time: Like this Not this c. Some living forms are also found in the fossil record. d. There are gaps in the fossil record for some lineages. Also, some species went extinct without leaving any descendants. e. The Caminalcules numbering is random; the numbers provide no clues to evolutionary relationships. f. There is only one correct phylogenetic tree in this exercise. This is because of the way that Joseph Camin derived his imaginary animals. He started with the most primitive form (#73) and gradually modified it using a process that mimics evolution in real organisms. After you complete your phylogeny, compare it with Camin's original. Part 3: Problems 1. You will notice that some lineages (e.g. the descendants of species 56) branched many times and are represented by many living species. What type of ecological conditions would result in the rapid diversification of some lineages? (A real world example would be the diversification of the mammals at the beginning of the Cenozoic, right after the dinosaurs went extinct.) 2. Some lineages (e.g. the descendants of species 58) changed very little over time. A good example of this would be “living fossils” like the horseshoe crab or cockroach. What is an example of an ecological condition that might cause this to happen? 3. Some Caminalcules went extinct without leaving descendents. In the real world, what factors might increase or decrease the probability of a species going extinct? 4. Find one example of convergent evolution among the Caminalcules. This means finding cases where two or more species have a similar characteristic that evolved independently in each lineage. The wings of bats, birds and bees are an example of convergence since the three groups did not inherit the characteristic from their common ancestor. Write your answers in but their most recent common complete sentences (e.g. “Species x and y both have ancestor, z, did not”). 5. Describe one example of vestigial structures that you can find among the Caminalcules. These are structures that have been reduced to the point that they are virtually useless. Ear muscles and the tailbones are examples of vestigial structures in our own species. © KC Distance Learning Illustrate your argument with vestigial structures found in humans or other real species. 6. Explain how vestigial structures provide clues about a species’ evolutionary past. Illustrate your argument with vestigial structures found in humans or other real species. 7. © KC Distance Learning
Purchase answer to see full attachment
User generated content is uploaded by users for the purposes of learning and should be used following Studypool's honor code & terms of service.

Explanation & Answer

Surname 1
Name
Professor’ Name
Course
Date
Part 1: Fossil Record
Geologic Journey
Description of the Burgess Shale
The Burgess Shale is a group of strange creatures touted to have existed over a half a
billion years ago. The name derives from the first site where they were traced by lead researcher,
Charles Walcott. Walcott came across the discovery in the year 1909 near the Mount Burgess in
the Canadian Rockies. Since their discovery, several other specimens of a similar origin have
been traced elsewhere in the United States, Siberia, China, and Greenland. Presently, over
65,000 specimens of these creatures are on display in the Smithsonian Museum of Natural
History. The creatures evoke a particular interest among evolutionists due to their unique
adaptive features.
Research indicates that the creatures were possibly buried by a mud avalanche in the sea
bed. It is then assumed that the animals existed at a time when the world was not rough and the
delicate organisms could exist with their soft bodies. However, due to climatic changes, it could
not have been possible for the animals to exist in their bodies. Assuming that there mud
avalanche had not happened and the animals had existed to the present moment, were could then
be witnessing a completely metamorphosed creature. The Burgess Shale had a soft body shell,
indicating a definite process in the evolution of creatures. The bodies were adaptive to the

Surname 2
prevailing circumstances at the time and point to the stages that the earthly creatures have
undergone over time.

Fossil Description
Baleen Whale Fossil on Display at the Burke Museum
Sketch of the Baleen Whale

The Baleen Whale fossil on display at the Burke Museum is estimated to be over 27
million years old. In contrast to the modern species of whales, the baleen shawls were
sign...

Related Tags