sin, cosine, and tangent2

Mathematics
Tutor: None Selected Time limit: 1 Day

Find the sine of 225°.

Find the sine of 150°.

Find the sine of 300°.

Find the sine of 315 

.Find the sine of 0 degrees

Oct 21st, 2014

Find the sine of 225°.

sin225=sin(180+45) 
sin(180+45)=-sin45 
from special angles we know that sin45=1/root2 
hence sin225=-1/root2 

cos225=cos(180+45) 
cos(180+45)=-cos45 
from special angles we know that cos 45=1/root2 
hence cos225=-1/root2 

tan225=tan(180+45) 
tan(180+45)=tan 45 
from special angle we know that tan45=1 
hence tan225=1 

Find the sine of 150°.

sin 150 = sin (180 - 30) = sin (2 x 90' - 30) = sin 30 = 1/2 <==ANSWER 

Find the sine of 300°.

sin(300) = sin(360-60) = -sin60 = -root(3)/2

Find the sine of 315 

Using unit circle, 

sin(315) = sin(7π/4) 
sin(315) = -√2 / 2 
sin(315) ≈ -0.71 
Your graph of sin(315) should be the following point on a X_Y coordinate. 
(x, y) = (5.50, -0.71) 

cos(315) = cos(7π/4) 
cos(315) = √2 / 2 
cos(315) ≈ 0.71 
Your graph of cos(315) should be the following point on a X_Y coordinate. 
(x, y) = (5.50, 0.71) 

tan(x) = sin(x) / cos(x) 
tan(315) = tan(7π/4) 
tan(315) = sin(315) / cos(315) 
tan(315) = (-√2 / 2) / (√2 / 2) 
tan(315) = -1 
Your graph of tan(315) should be the following point on a X_Y coordinate. 
(x, y) = (5.50, -1) 

.Find the sine of 0 degrees

  • cos 0° = 1, sin 0° = 0 and tan 0° = 0


Oct 21st, 2014

Studypool's Notebank makes it easy to buy and sell old notes, study guides, reviews, etc.
Click to visit
The Notebank
...
Oct 21st, 2014
...
Oct 21st, 2014
Dec 8th, 2016
check_circle
Mark as Final Answer
check_circle
Unmark as Final Answer
check_circle
Final Answer

Secure Information

Content will be erased after question is completed.

check_circle
Final Answer