##### sin, cosine, and tangent2

label Mathematics
account_circle Unassigned
schedule 1 Day
account_balance_wallet \$5

Find the sine of 225°.

Find the sine of 150°.

Find the sine of 300°.

Find the sine of 315

.Find the sine of 0 degrees

Oct 21st, 2014

Find the sine of 225°.

sin225=sin(180+45)
sin(180+45)=-sin45
from special angles we know that sin45=1/root2
hence sin225=-1/root2

cos225=cos(180+45)
cos(180+45)=-cos45
from special angles we know that cos 45=1/root2
hence cos225=-1/root2

tan225=tan(180+45)
tan(180+45)=tan 45
from special angle we know that tan45=1
hence tan225=1

Find the sine of 150°.

sin 150 = sin (180 - 30) = sin (2 x 90' - 30) = sin 30 = 1/2 <==ANSWER

Find the sine of 300°.

sin(300) = sin(360-60) = -sin60 = -root(3)/2

Find the sine of 315

Using unit circle,

sin(315) = sin(7π/4)
sin(315) = -√2 / 2
sin(315) ≈ -0.71
Your graph of sin(315) should be the following point on a X_Y coordinate.
(x, y) = (5.50, -0.71)

cos(315) = cos(7π/4)
cos(315) = √2 / 2
cos(315) ≈ 0.71
Your graph of cos(315) should be the following point on a X_Y coordinate.
(x, y) = (5.50, 0.71)

tan(x) = sin(x) / cos(x)
tan(315) = tan(7π/4)
tan(315) = sin(315) / cos(315)
tan(315) = (-√2 / 2) / (√2 / 2)
tan(315) = -1
Your graph of tan(315) should be the following point on a X_Y coordinate.
(x, y) = (5.50, -1)

.Find the sine of 0 degrees

• cos 0° = 1, sin 0° = 0 and tan 0° = 0

Oct 21st, 2014

...
Oct 21st, 2014
...
Oct 21st, 2014
Oct 19th, 2017
check_circle