Fomal Logic Propositional Logic, philosophy homework help

Nov 30th, 2016
Anonymous
Category:
Art Design
Price: $5 USD

Question description

Question 1

Select the conclusion that follows in a single step from the given premises:
1. ~R≡ ~R
2. N • ~T
3. R ⊃ ~(N • ~T)

∼T  2, Simp

(N •∼T)⊃∼R  3, Trans

∼R  2, 3, MT

R⊃(∼N∨∼∼T)  3, DM 

∼R  1, Taut

Question 2

Select the conclusion that follows in a single step from the given premises:
1. N ∨ C
2. (N ∨ C) ⊃ (F ⊃ C)
3. ~C

F⊃C  1, 2, MP

N    1, 3, DS

∼F  2, 3, MT

∼N  1, 3, MT

∼C • R  3, Add

Question 3

Select the conclusion that follows in a single step from the given premises:
1. A
2. (A ⊃ ~T) ⊃ ~G
3. Q ⊃ (A ⊃ ~T)

Q⊃(T⊃∼A)  3, Trans

(Q⊃A)⊃∼T  3, Assoc

A⊃(∼T •∼G)  2, Exp

∼T  1, 3, MP

Q⊃∼G  2, 3, HS 

Question 4

Select the conclusion that follows in a single step from the given premises:
1. D ⊃ H
2. ~D
3. ~(D ∨ S)

∼H  1, 2, MT

∼D∨(D⊃H)  2, Add 

H⊃D  1, Com

S  2, 3, DS

∼D∨∼S  3, DM

Question 5

Select the conclusion that follows in a single step from the given premises:
1. ~U ⊃ (S • K)
2. R ⊃ (~U • ~U)
3. S ≡ ~U

(∼U • S)⊃K  1, Exp

R⊃U  2, DN

R⊃∼U  2, Taut 

R⊃(S • K)  1, 2, HS

(S⊃U) • (∼U⊃∼S)  3, Equiv

Question 6

Select the conclusion that follows in a single step from the given premises:
1. P • (~H ∨ D)
2. ~(~P • ~H)
3. (P ⊃ ~H) • (~P ⊃ H)

P ≡ ∼H  3, Equiv

∼H∨D  1, Simp

(P •∼H)∨D  1, Assoc

P • (H⊃D)  1, Impl 

P • H  2, DN

Question 7

Select the conclusion that follows in a single step from the given premises:
1. ~(Q • ~S)
2. ~F ⊃ (Q • ~S)
3. H ∨(Q • ~S)

(H • Q)∨(H •∼S)  3, Dist

∼Q∨S  1, DM

F  1, 2, MT

H  1, 3, DS

~~F 1, 2, MT

Question 8

Select the conclusion that follows in a single step from the given premises:
1. Q ⊃ (A ∨ ~T)
2. T
3. A ∨ ~T

Q⊃(∼∼A∨∼T)  1, DN

(A∨∼T)⊃Q  1, Com

(Q⊃A)∨∼T  1, Assoc

Q  1, 3, MP

A  2, 3, DS

Question 9

Select the conclusion that follows in a single step from the given premises:
1. (J • ~N) ∨ T
2. ~(J • ~N)
3. ~T

T  1, 2, DS

∼J∨N  2, DM

J •∼N  1, 3, DS

J • (∼N∨T)  1, Assoc

∼J  2, Simp

Question 10

Select the conclusion that follows in a single step from the given premises:
1. (K • ~T) ∨ (K • ~H)
2. ~M ⊃ (K • ~H)
3. ~(K • ~H)

∼K∨H  3, DM

K •∼T  1, 3, DS

K • (∼T∨∼H)  1, Dist 

M  2, 3, MT

(∼M • K)⊃∼H  2, Exp

Question 11

Select the conclusion that follows in a single step from the given premises:
1. ~I ∨ ~~B
2. M ⊃ ~I
3. I

M⊃∼∼B  1, 2, HS

∼∼B  1, 3, DS

∼M  2, 3, MT

∼I⊃M  2, Com

∼(I •∼B)  1, DM 

Question 12

Select the conclusion that follows in a single step from the given premises:
1. A
2. G ⊃ (A ⊃ ~L)
3. ~A ∨ ~G

A∨G  3, DN

(G⊃A)⊃∼L  2, Assoc

∼L  1, 2, MP

∼G  1, 3, DS

G⊃(∼∼L⊃∼A)  2, Trans 

Question 13

Select the conclusion that follows in a single step from the given premises:
1. (S • ~J) ∨ (~S • ~~J)
2. S ∨ ~S
3. ~J ⊃ P

S  2, Taut

∼J∨∼∼J  1, 2, CD

S ≡ ∼J  1, Equiv 

J∨P  3, Impl

∼P⊃J  3, Trans

Select the conclusion that follows in a single step from the given premises:
1. (S ⊃ ~F) • (~F ⊃ B)
2. S ∨ ~F
3. ~F

S⊃B  1, HS

∼F∨B  1, 2, CD 

S  2, 3, DS

B  1, 3, MP

∼S  1, 3, MT

Question 15

Select the conclusion that follows in a single step from the given premises:
1. ~M ⊃ S
2. ~M
3. (M ∨ H) ∨ ~S

H  2, 3, DS

M∨H  3, Simp

M∨(H∨∼S)  3, Assoc 

∼S  1, 2, MP

M∨S  1, Impl

Question 16

Select the conclusion that follows in a single step from the given premises:
1. G • ~A
2. K ⊃ (G • ~A)
3. G ⊃ M

(K⊃G )⊃∼A 2, Exp

K⊃(∼A • G)  2, Com 

(K⊃G) •∼A  2, Assoc

K  1, 2, MP

M  1, 3, MP

Question 17

Select the conclusion that follows in a single step from the given premises:
1. ~E ⊃ P
2. ~P
3. ~(P ∨ ~H)

∼H  2, 3, DS

∼P •∼(P∨∼H)  2, 3, Conj 

∼P • H   3, DM

E  1, 2, MT

∼P⊃E  1, Trans

Question 18

Select the conclusion that follows in a single step from the given premises:
1. N ≡ R
2. (N • ~R) ⊃ C
3. N

(N⊃R)∨(R⊃N)  1, Equiv

N • (∼R⊃C)  2, Assoc

C⊃(N •∼R)  2, Com

N⊃(∼R⊃C)  2, Exp 

R  1, 3, MP

Question 19

Select the conclusion that follows in a single step from the given premises:
1. N
2. R ⊃ ~N
3. ~C • (T ⊃ R)

∼C  3, Simp

T⊃∼N  2, 3, HS

(∼C • T)⊃R  3, Assoc

∼R  1, 2, MT

N⊃∼R  2, Trans

Question 20

Select the conclusion that follows in a single step from the given premises:
1. ~N • ~F
2. K ⊃ (N • F)
3. U ∨ (K • ~N)

∼K  1, 2, MT

(U∨K) •∼N  3, Assoc

(K • N)⊃F  2, Exp

(U∨K) • (U∨∼N)  3, Dist 

∼(N • F)  1, DM


Tutor Answer

(Top Tutor) jaflorendo
School: Duke University
PREMIUM TUTOR

Here are the answers:😄1. R⊃(∼N∨∼∼T) 3, DM2. F⊃C 1, 2, MP3. Q⊃∼G 2, 3, HS 4. ∼D∨(D...

Studypool has helped 1,244,100 students

Review from student
ddg82
" Thanks, good work "
Ask your homework questions. Receive quality answers!

Type your question here (or upload an image)

1831 tutors are online

Brown University





1271 Tutors

California Institute of Technology




2131 Tutors

Carnegie Mellon University




982 Tutors

Columbia University





1256 Tutors

Dartmouth University





2113 Tutors

Emory University





2279 Tutors

Harvard University





599 Tutors

Massachusetts Institute of Technology



2319 Tutors

New York University





1645 Tutors

Notre Dam University





1911 Tutors

Oklahoma University





2122 Tutors

Pennsylvania State University





932 Tutors

Princeton University





1211 Tutors

Stanford University





983 Tutors

University of California





1282 Tutors

Oxford University





123 Tutors

Yale University





2325 Tutors