ASCI 309 Rectilinear Motion Exercise
Select and identify your aircraft. Then provide the following:
A. Maximum Takeoff Weight (MTOW) [lbs]:
B. Engine Type and Rated Thrust [lbs]:
C. Total Available Thrust (sum of all engines for multiengine aircraft) [lbs]:
D. Maximum Rate of Climb [ft/min]:
E. Take-off distance at MTOW [ft]:
Uniformly Accelerated Rectilinear Motion and Newton’s Law of Momentum
Equations:
F = ma
m = W/g
A=F/M
g = 32.2 ft/sec2
Takeoff distance (s) = VF 2 /2a
KE = ½ mV2
PE = Wh
HP= T*Vkts /325
1 kt = 1.69 ft/sec
* Remember to keep track of units, convert as required, and express answers in the requested
unit.
Next complete the following:
1. Find the mass of your aircraft. (m = W/g)
2. Find the Acceleration of your aircraft using the total thrust you found. (A=F/Mass. Note
in this case F=Force of Total Thrust of your engines)
3. If your aircraft lifted off the ground at 150kts, what would be the length of the takeoff run
(in feet)? (Takeoff distance (s) = VF 2 /2a. Watch for unit conversions.)
4. The time t [S] it took for this Takeoff.
Similar to detailing assumptions and conditions at the onset, any quantitative result of
our theoretical work also requires a qualitative discussion of applicability. The important
question to discuss is how accurate our result will depict the real world. Possible errors
College of Aeronautics | worldwide.erau.edu
All rights are reserved. The material contained herein is the copyright property of Embry-Riddle
Aeronautical University, Daytona Beach, Florida, 32114. No part of this material may be
reproduced, stored in a retrieval system or transmitted in any form, electronic, mechanical,
photocopying, recording or otherwise without the prior written consent of the University.
should be identified, our certainty about results evaluated, and additional
recommendations for further improvement provided.
Therefore, comment on your findings in Questions #1 through #3. Compare your
calculated takeoff distance in #3 with your research above in item E. What elements did
we neglect in the acceleration computed in Question #1? How did it affect our further
work in #2 and #3?
5. What is the power [HP] of the aircraft engines after takeoff at the total available thrust
from item B (found above) if flying at 200kts? (HP= T*Vkts /325 – (T is Total Thrust).
Remember, this formula already has unit conversions included.)
6. What is the Kinetic Energy [ft-lb] of the aircraft at 200kts and Maximum Takeoff Weight
(KE = ½ mV2 - from item B above)?
7. What is the Potential Energy [ft-lb] of the aircraft after climbing out to 10,000ft above sea
level at Maximum Takeoff Weight (PE = Wh W is WT and H Is Height from item B)?
8. What is the Total Energy of the aircraft using questions 5 & 6 above? (TE=KE +PE)
Page 2 of 3
Page 3 of 3
CONVERSION FACTORS
multiply / divide
by
150
6
6
144
psf
psi
2.036
Hg"
psf
144
psi
psf
70.726
Hg"
Hg"
2.036
psi
Hg"
70.726
psf
knots
1.69
fps
knots
1.15
mph
knots
101.3
fpm
fps
0.5925
knots
fps
0.6818
mph
mph
1.467
fps
mph
0.869
knots
nautical mile (nm)
6076
ft
nautical mile (nm)
1.15
statue mile (sm)
ft
0.00016458
ft
0.00018939
statue mile (sm)
statute mile (sm)
0.869
nautical mile (nm)
statue mile (sm)
5280
ft
slug
14.594
kg
kg
14.594
slug
(°F)
(F-32)*5/9
(°C)
(°C)
(C*9/5)+32
(°F)
add / subtract
Fahrenheit (°F)
47.6
nautical mile (nm)
460
Rankine (°R)
-460
Fahrenheit (°F)
Celsius (°C)
273.15
Kelvin (K)
Kelvin (K)
-273.15
Celsius (°C)
Statute mile (sm) = 5280 ft
Velocity (knots(kt) or nm/hr) 1 kt = 1.69 ft/s
Velocity (mph) 1 kt = 1.15 mph
Horsepower = 550 ft-lb/s
Foot = 0.305 meters
Nautical mile = 1851 meters
Statue mile = 1609 meters
1 kg = 2.2 lbmass
1 Newton = 0.225 lbforce
0.0
0.000
0.00
0.000
0.00
0.0
253.50
6.90
607.80
0.00
0.00
0.00
0.00
0.00
0.00
0.0000
0.00
0.00
0.0
0.0
0.00
-17.8
32.0
to get
by
Rankine (°R)
Nautical mile (nm) = 6076 ft
Fundamental Units
to get
psi
507.6
-460.0
273.2
-273.2
British Grav. Sys (BGS) Term
BGS/English Unit
Aviation Terms
US Unit
ICAO Unit
Internat'l System (SI) Term
SI Unit
Distance
feet
ft
meter
m
Time
second
s
second
s
Temperature
Fahrenheit
°F
Celsius
°C
Altitude and Vertical distance
feet (ft)
feet
Absolute Temp
Rankine
°R
Kelvin
°K
Air Distance
nautical mile (nm)
nautical mile (nm)
Force
Pound-force (pounds x g)
Airspeed
knots (kt) = nm/hr
knots
ft-lb/s
2
Mass
kilogram
kg
Derived Units
British Grav. Sys (BGS) Term
BGS/English Unit
Force
Internat'l System (SI) Term
SI Unit
Newton (N)
kg-m/s 2
lb-s 2 /ft
ft/s
meters/second
m/s
ft/s 2
meters/second squared
m/s 2
ft 2
Square meters
m2
liters
Mass
Slug or Poundmass (W / g)
Velocity
feet/second (fps)
Acceleration
feet/second squared
Area
Square feet
Volume
Cubic feet
ft 3
Pressure
pound/square foot (psf)
Pascal (Pa)
Energy
foot-pounds
lb/ft
ft-lb
l or m 3
N/m2
Joules(J)
N-m
Work
foot-pounds
ft-lb
Joules(J)
N-m
Power
foot-pounds/second
ft-lb/s
Watts (W)
Moment
foot-pounds
ft-lb
Newton meters
N-m
Momentum (p )
Mass x Velocity
(lb- s /ft) x (ft/s) = lb-s
Mass*Velocity
kg-m/s
2
2
J/s
Term
Runway Length
Temperature
Atmospheric Pressure
feet (ft)
Remarks
Meters (m)
Celsius
Celsius
Pounds/square inch (PSI)
or Hg"
Hectopascals
Old Soviet bloc use meters
Old Soviet bloc use meters/s
Table 2.1, Standard A
Altitude
(ft)
0
1,000
2,000
3,000
4,000
5,000
6,000
7,000
8,000
9,000
10,000
15,000
20,000
25,000
30,000
35,000
36,089
40,000
45,000
50,000
60,000
70,000
80,000
90,000
100,000
150,000
200,000
250,000
Density Ratio, σ
𝜎
1.0000
0.9711
0.9428
0.9151
0.8881
0.8617
0.8359
0.8106
0.7860
0.7620
0.7385
0.6292
0.5328
0.4481
0.3741
0.3099
0.2971
0.2462
0.1936
0.1522
1.0000
0.9854
0.9710
0.9566
0.9424
0.9283
0.9143
0.9004
0.8866
0.8729
0.8593
0.7932
0.7299
0.6694
0.6117
0.5567
0.5450
0.4962
0.4400
0.3901
Table 2.1, Standard Atmosphere Table (pg 16)
Pressure Ratio, δ
Temperature
(°F)
Temperature
(°R)
Temperature Ratio, θ
Speed of Sound
(knots)
1.0000
0.9644
0.9298
0.8962
0.8637
0.8320
0.8014
0.7716
0.7428
0.7148
0.6877
0.5643
0.4595
0.3711
0.2970
0.2353
0.2234
0.1851
0.1455
0.1145
59.00
55.43
51.87
48.30
44.74
41.17
37.60
34.04
30.47
26.90
23.34
5.51
-12.32
-30.15
-47.98
-65.82
-69.70
-69.70
-69.70
-69.70
519.00
515.43
511.87
508.30
504.74
501.17
497.60
494.04
490.47
486.90
483.34
465.51
447.68
429.85
412.02
394.18
390.30
390.30
390.30
390.30
1.0000
0.9931
0.9862
0.9794
0.9725
0.9656
0.9587
0.9519
0.9450
0.9381
0.9312
0.8969
0.8625
0.8281
0.7937
0.7594
0.7519
0.7519
0.7519
0.7519
661.7
659.5
657.2
654.9
652.6
650.3
647.9
645.6
643.3
640.9
638.6
626.7
614.6
602.2
589.5
576.6
573.8
573.8
573.8
573.8
Kinematic Viscosity, v
2
(ft /s)
0.000158
0.000161
0.000165
0.000169
0.000174
0.000178
0.000182
0.000187
0.000192
0.000197
0.000202
0.000229
0.000262
0.000302
0.000349
0.000405
0.000419
0.000506
0.000643
0.000818
Acceleration due to
gravity, g
(ft/s2)
32.189
32.159
32.143
32.128
32.112
32.097
32.082
32.066
32.051
32.036
32.020
31.990
31.959
31.929
31.897
31.868
31.717
31.566
31.415
Links (to find:)
MASS / Weight
Mass / Weight
W = m * g // m = W/g
Find Acceleration (when Velocities and Time are known)
Find Acceleration (when Velocities and distance known)
Weight
Find Velocity (given time & acceleration)
Mass
Find Takeoff Velocity (given accel, distance, & initial Velocity)
Gravity Accel
Find Time (given Vel & Accel)
Find distance (given Vel & Accel)
Find distance (given initial Velocity, Time & Accel)
PE
KE
TE (total mechanical energy)
Work
Power
Finding Ground Speed
V h = V a/c (Cos λ)
Horsepower, when Velocity is in ft/s
Horsepower, when Velocity is in Knots
Friction
Ground Speed
Acft TAS
Climb Angle
Ground Speed
Rate of Climb
Finding Rate of Climb Speed (R
V v = V a/c (Sin λ)
Acft TAS
Climb Angle
Rate of Climb
Find Acceleration (when Velocities an
known)
a = (V 2 - V 0 2 ) / 2s
Initial Velocity
Final Velocity
Distance traveled
a
MASS / Weight
W = m * g // m = W/g
W
m
=
=
32.2
0.03
lbs
slugs
nm/hr
degrees
nm/hr
Vh
=
173.2
nm/hr
W
1
lbs
m
1
(lb-s )/ft
g
32.2
2
ft/s2
Finding Ground Speed
V h = V a/c (Cos λ)
Va/c
200
30
?
λ
Vh
Finding Rate of Climb Speed (ROC)
V v = V a/c (Sin λ)
Va/c
200
nm/hr
Vv
=
100.0
nm/hr
λ
30
degrees
Vv
=
10,140.0
ft/min
Vv
?
nm/hr
nd Acceleration (when Velocities and distance
known)
a = (V 2 - V 0 2 ) / 2s
V0
V
s
0
219.7
500
ft/s
ft/s
ft
=
48.3
ft/s2
Find Acceleration (when V & Time known)
a = ΔV / Δt = (V - V 0 ) / (t - t 0 )
Initial Vel
V0
0
fps
Meas Vel
V
219.7
fps
Initial Time
t0
0
sec
Meas Time
t
5
sec
Find Velocity (given ti
V=V0 +a
a
a
a
=
=
=
43.9
158,184.0
107,852.7
ft/s2
Initial Vel
2
Acceleration
2
Initial Time
ft/min
mi/hr
Meas Time
V
Vh
Ground Speed
Va/c
True Airspeed
Vv
Rate of Climb
λ
Climb Angle
Find Velocity (given time & acceleration)
V = V 0 + a(t - t 0 )
Find Takeoff Velocity (given accel, distance, &
initial Velocity)
V f = √(V 0 2 +2as)
V0
5
fps
a
24
ft/s2
Initial Vel
t0
1
sec
t
5
sec
=
101.0
fps
V0
50
fps
Acceleration
a
10
ft/s
Distance
s
500
ft
Vf
=
111.8
2
fps
Find Time (given Vel & Accel)
t = [(V - V 0 ) / a]+ t 0
Find distance (given Vel & Accel)
s = (V 2 - V 0 2 ) / 2a
Initial Vel
V0
0
fps
Initial Vel
V0
0
fps
Meas Vel
V
219.7
fps
Final Vel
V
24
fps
Initial Time
t0
0
sec
Accel
a
5
ft/s
Acceleration
a
12.88
ft/s2
Distance
s
?
ft
Time
t
?
sec
=
1440.0
=
17.1
t
s
sec
2
ft
Find distance (given initial Vel, Time & Accel)
s = V 0 t + (at 2 / 2)
Potential Energy (PE)
PE = W * h
V0
0
fps
Weight
W
Time
t
10
sec
Height
h
Accel
a
5
ft/s
Pot. Energy
PE
Distance
s
?
ft
PE
=
=
250.0
Initial Vel
s
2
ft
Potential Energy (PE)
PE = W * h
Kinetic Energy (KE)
KE = (mV 2 ) / 2
(lb-s2)/ft
ft/s
10000
lbs
Mass
m
310.56
10000
ft
Velocity
V
422.5
ft-lbs
Kin. Energy
KE
?
KE
=
27,718,450.50
ft-lbs
2.772E+07
ft-lbs
?
100,000,000.00
ft-lbs
1.00E+08
ft-lbs
ft-lbs
Mechanical Energy (TE)
TE = PE + KE
TE
=
Work
w=F*D
Force
F
100
lbs
ft
127,718,450.50
ft-lbs
Distance
D
150
1.277E+08
ft-lbs
Work
w
?
=
15,000.00
ft-lbs
1.500E+04
ft-lbs
w
ft-lbs
Power
P = [(F * D) / time] OR P = F * V or P = W/t
Horsepower (when V is in ft/s)
HP = (F * V) / 550
Force
F
1500
lbs
Force
F
1500
Distance
D
10
ft
Distance
D
10
time
t
1
sec
Velocity
V
10
Power
P
?
ft-lbs/s
time
t
1
P
=
15,000.0
ft-lbs/s
=
27.3
1.500E+04
ft-lbs/s
→
HP
Manually, from values above
HP
HP
=
=
27.3
27.3
when V is in ft/s)
V) / 550
Horsepower (when V is in knots)
P (HP) = (TV k ) / 325
lbs
Thrust
T
32000
ft
Velocity
V
450
Friction (runway)
Fb = μ*N
lbs
Braking Force
Fb
nm/hr
Normal Force
N
Coef of Friction
μ (mu)
Fb
=
μ (mu)
=
ft/s
sec
ft-lbs/s
m values above
ft-lbs/s
ft-lbs/s
P (HP)
=
44,307.7
=
2.4336E+07
HP
ft-lb/s
Friction (runway)
Fb = μ*N
1500
lbs
500
lbs
0.53
unitless
265.0
3.0
lbs
unitless
Density (ρ-rho) / Mass (m) / Volume (V)
ρ=m/V
Links to Find:
Density (ρ-rho) / Mass (m) / Volume (V)
Mass
m
0.15
slugs
Pressure Alt (PA), given Altimeter Setting
Volume
V
3
Ambient Pressure P, given δ (Press Ratio)
Air Density
ρ (rho)
0.05
0.05
0.15
slugs/ft3
3.00
ft3
ft
3
slugs/ft3
Pressure Ratio (δ - delta)
Density Ratio (σ - sigma), given density
m
=
=
Find Density (ρ -rho), given Density Ratio
V
=
Temperature Ratio (θ - theta)
Density Ratio (σ - sigma) , given Press. & Temp.
Density Ratio (when δ is Interpolated from table)
Dynamic Pressure (q), when V is in ft/s
Dynamic Pressure (q), when V is in knots
"ICE-T" (acronym for airspeeds)
True Airspeed (TAS)
Density (ρ)
slugs
Altitude Pressure Ratio (δ - delta)
Temperature Ratio (θ - th
δ=P/P0
Ambient Static Press
Std SL Static Press
Press Ratio ( δ delta)
θ=T/T0
P
P0
13.75
psi or Hg"
Ambient Air Temp
29.92
psi or Hg"
Std SL Air Temp
=
0.45956
unitless
Temp Ratio ( θ theta)
Find Ambient Pressure P , given δ
P= δ*P0
Press Ratio
Std SL Static Press
Ambient Pressure (P)
δ
P0
0.4595
unitless
29.92
psi or Hg"
=
13.75
psi or Hg"
Find Pressure Alt (PA), given Altimeter Setting
1) 29.92" Hg - Alt Setting = ΔP
2) ΔP / .001" = Δalt
3) Elevation + Δalt. = Pressure Alt. (PA)
Elevation
5,000
ft
Altimeter Setting
28.92
Hg"
Std Sea Level Pressure
29.92
Hg"
Change in Pressure
ΔP
1.00
Hg"
Change in Altitude
Δ Alt
1000
ft
Pressure Alt. (PA)
=
6,000
Pressure Altitude
(PA)
Density Altitude
(DA)
ft
Standard Day Parameters
Temperature Ratio (θ - theta)
Density Ratio (σ - sigma), given density
θ=T/T0
σ=ρ/ρ0
T
T0
507.6
°R / °K
Density
519
°R / °K
SL Density
=
0.97803
unitless
ρ (rho)
ρ 0 (rho)
Density Ratio ( σ)
0.0012468 slugs/ft3
0.002378 slugs/ft3
=
0.5243
unitless
Find Density, given Density Ratio
ρ=σρ0
Density Ratio
Density (ρ)
σ (sigma)
=
0.5243
unitless
0.0012468 slugs/ft3
1.2468E-03 slugs/ft3
is altitude in the standard atmosphere corresponding to a certain
static pressure. Used to determine True Airspeed (TAS), Density
Altitude (DA) and takeoff/landing data
PA is the vertical disance above a std datum plane where
atmospheric pressure is 29.92"
PA, corrected for nonstandard temperature
Standard Day Parameters
(σ - sigma) Density Ratio (given Press. & Temp.)
σ = δ /θ = (P / P 0 ) / (T / T 0 )
Static Press
E2.10 Dynamic Pressure (q), when
2
q = .5(ρV )
6.754
psi or Hg"
Velocity
Std Sea Lvl Press
P
P0
14.70
psi or Hg"
Density ratio
Absolute Temp
T
437.7
°R
Density (air)
Std Sea Lvl Temp
T0
519
°R
Press Ratio
δ (delta)
0.4595
unitless
Temp Ratio
θ (theta)
0.8434
unitless
=
0.5448
Density Ratio ( σ)
Dynamic Press (q)
unitless
Find Density Ratio (when δ is Interpolated from table)
σ = δ /θ
Pressure Ratio
δ (delta)
0.8014
unitless
E2.10 Dynamic Pressure (q), when
q = ( σV k 2 ) / 295
Velocity
Temperature Ratio
θ (theta)
0.9780
unitless
Density ratio
=
0.8194
Altitude (from chart)
20,000
ft
Indicated Temp
507.6
°R
Density Ratio ( σ)
unitless
Dynamic Press (q)
10 Dynamic Pressure (q), when V is ft/s
2
ICE-T (airspeeds)
q = .5(ρV )
V
338
σ
0.7385
ρ
=
ft/s
unitless
I
Indicated Airspeed (IAS)
C
Calibrated Airspeed (CAS)
the actual reading off of
the AS Indicator Dial
0.00175615 slugs/ft3
100.31
lb/ft2
IAS corrected for
installation error and
instrument error
EAS = CAS + ΔVc
10 Dynamic Pressure (q), when V is Knots
q = ( σV k 2 ) / 295
Vk
200.3
knots
σ
0.7385
E
Equivalent Airspeed (EAS)
T
True Airspeed (TAS)
(see chart below)
CAS corrected for
compressibility effects
(high flight speeds)
EAS corrected for Density
Ratio (σ)
unitless
TAS = EAS / √σ
=
100.44
lb/ft2
Equivelant Airspeed
EAS
Square root of Density ratio
√σ
True Airspeed (TAS)
=
use this table for computing EAS
airspeeds)
the actual reading off of
the AS Indicator Dial
IAS corrected for
installation error and
instrument error
KIAS
KCAS
CAS + ΔVc
CAS corrected for
compressibility effects
(high flight speeds)
KEAS
EAS corrected for Density
Ratio (σ)
KTAS
EAS / √σ
220.5
knots
0.5328
unitless
302.1
knots
Links to Find:
E4.1 Reynolds Number
R g = Vx / v
Reynolds Number
Stream Velocity
V
Lift Equation (basic)
aq
x
Lift Equation (when dealing with velocity)
Coefficient of Lift (when dealing with acft weight)
Stall Velocity-to-Weight Relationship in lift
Kinematic Viscosity
v
Reynolds # (R g )
=
Stall Speed Equation
AIRFOIL TERMINOLOGY
NACA AIRFOIL SERIES
#DIV/0!
mber
E4.2 Lift Equation (basic)
v
L = C L qS
ft/s
Coefficient of Lift
CL
ft
Dynamic Pressure
Planform Area
q
lb/ft2
S
ft2
ft2/s
unitless
Lift (L)
=
0.5945
0.0
unitless
lbs
E4.2 Lift Equation (when dealing with velocity)
L =C L ( σV 2 /295) S
CL
Coefficient of Lift
0.8
unitless
Density Ratio
Velocity (airflow)
Planform Area
Lift (L)
σ
V
S
0.8617
200
150
=
14,020.9
unitless
knots
ft2
lbs
E4.2 Coefficient of Lift (when dealing with acft weight)
C L = (295W / σV 2 S)
Weight (gross)
W
1,974
lb
Density Ratio
σ
1.0000 unitless
Velocity (airflow)
V
46
knots
Planform Area
S
174
ft2
Coefficient of Lift (CL)
=
1.5816
unitless
E4.3 Stall Velocity-to-Weight Relationship in lift
AIRFOIL
V 2 = V 1 √(W 2 / W 1 )
Velocity
V1
114
Weight (gross)
W2
Weight (gross)
Stall Speed (V 2 )
knots
1. Chord Line
20,000
lb
2. Chord (C)
W1
15,000
lb
3. Mean Camber Line
4. Max. Camber
=
131.6
knots
5. Max Thickness
6. Leading Edge Radius
E4.3 Stall Speed Equation
V s = √(295L / C L(max) σS)
Lift
Lift Coefficient
Density Ratio
Wing Area
L
15000
C L(max)
σ
S
1.35
1
340
lbs
unitless
unitless
ft2
NACA
Stall Speed (V s )
=
98.2
knots
Designator
Four Digit
digit pos.
1st
2nd
3rd/4th
Five Digit
One Series
Six Series
1st
2nd
3rd
4th/5th
AIRFOIL TERMINOLOGY
NACA AIRFOIL SERIES
Description
the amount of camber (% C)
position of max camber from leading edge (10ths or % C)
maximum thickness (% C)
indicates the airfoil series
location of minimum pressure in 10ths or % C
design lift Coefficient (CL) in 10ths
maximum thickness (% C)
Links to Find:
E2.10 Dynamic Pressure (q), when V is ft/s
q = .5(ρV 2 )
Dynamic Pressure
Aspect Ratio
Velocity
V
338
Aspect Ratio (when chord avg is not easily calculated)
Density ratio
σ
0.7385
Wing Surface Area
Density (air)
ρ
0.00175615
=
100.31
Wing Taper Ratio
Basic Drag Equation (simple)
Dynamic Press (q)
Basic Drag Equation (alternate)
Parasite Drag
E2.10 Dynamic Pressure (q), when V is Knots
q = ( σV k 2 ) / 295
Vk
Velocity
200.3
Coefficient of Parasite Drag
Density ratio
Coefficient of Drag (derived from Basic Drag Eq)
Induced Drag
Induced Drag Alternate (if dealing with acft weight)
Coefficient of Induced Drag
Lift to Drag Ratio
Dynamic Press (q)
σ
=
0.7385
100.44
, when V is ft/s
Aspect Ratio
AR = b/c avg
)
ft/s
Wingspan
unitless
slugs/ft
3
b
36
ft
Root Chord
c root
4.8
ft
Tip Chord
c tip
4.8
ft
Aspect Ratio (AR)
=
7.50
unitless
lb/ft2
when V is Knots
Aspect Ratio, when cavg not easily calculated
AR = b 2 / S
295
knots
Wingspan
b
36
ft
unitless
Planform Area
S
174
ft
lb/ft2
Aspect Ratio (AR)
=
7.45
2
unitless
Wing Surface Area
Wing Taper Ratio
S = b * c avg
λ = ctip / croot
b
36
ft
Tip Chord
ct
Root Chord
c root
4.832
ft
Roort Chord
cr
Tip Chord
c tip
4.832
ft
Taper Ratio (λ)
=
Wingspan
Planform (S)
=
174.0
ft
2
Wing Taper Ratio
BASIC Drag Equation (simple)
= ctip / croot
D=CD *q*S
4.832
ft
Coefficient of Drag
CD
4.832
ft
Dynamic Pressure
q
Planform Area
S
Drag (D)
=
1.00
unitless
-
BASIC Drag Equation (alt)
D = (C D σ V 2 S) / 295
CD
Coefficient of Drag
Density Ratio (sigma)
Velocity
σ
V2
Planform Area
S
Drag (D)
=
-
Coefficient of Drag (derived from Basic Drag Eq)
C D = (295D) / ( σ V 2 S)
Drag
D
Density Ratio (sigma)
σ
2
Velocity
V
Planform Area
S
Coefficient of Drag (C D )
=
#DIV/0!
mple)
unitless
lb/ft
ft
2
2
Parasite Drag
D P = (C Dp σ V 2 KTAS
C Dp
Coefficient of Para. Drag
Density Ratio
Velocity
σ
V
2
Planform Area
S
Acft Parasite Drag (D P )
=
S) / 295
0.02547
unitless
1
unitless
46
KTAS
174
ft2
lb
alt)
31.79
lb
Coefficient of Parasite Drag
C Dp = 295 D p / σ V 2 KTAS S)
Dp
Parasite Drag
31.8
lb
lb/ft
KEAS
Density Ratio
ft2
295
unitless
2
lb
Basic Drag Eq)
2
V S)
lb
unitless
KEAS
ft2
unitless
σ
1
unitless
V2
46
KTAS
Planform Area
S
174
ft2
Coeff. Of Parasite Drag (C Dp )
=
Velocity
0.02548
lb
D i = (C L 2 σ
Coefficient of Lift
Induced Drag
V 2 KTAS S) /
CL
Density Ratio
Velocity
σ
V
2
( π e AR 295)
1.582
unitless
1
unitless
46
KTAS
174
ft2
Planform Area
S
PI (constant)
π
Wing efficiency factor
e
0.7
unitless
AR
7.4
unitless
Wing Aspect Ratio
Acft Induced Drag (D i )
=
3.14159265 unitless
191.94
Coefficient of Induced Drag
C Di = C L 2 / ( π e AR)
CL
Coefficient of Lift
1.582
PI (constant)
Wing efficiency factor
Wing Aspect Ratio
Induced Drag Coeff (C Di )
π
e
AR
=
lb
unitless
3.14159265 unitless
0.7
unitless
7.4
unitless
0.15
unitless
Induced Drag Alternate (if dealing with acft weight)
D i = (295W 2 ) / ( σ V 2 KTAS S π e AR)
Acft Weight
W
1982 lbs
Density Ratio
Velocity
σ
V
2
1
unitless
43
KTAS
174
ft2
Planform Area
S
PI (constant)
π
Wing efficiency factor
e
0.7
unitless
AR
7.4
unitless
=
221.34
Wing Aspect Ratio
Acft Induced Drag (D i )
3.141593 unitless
lb
Lift to Drag Ratio
L/D = C L / C D
Lift (or Weight)
L (or W)
lb
Drag
D
lb
Coefficient of Lift
CL
1.582
unitless
Coefficient of Drag
CD
0.1774
unitless
Drag
=
=
=
CL
=
#DIV/0!
unitless
CD
=
#DIV/0!
unitless
Ratio
Lift
8.92
-
unitless
lbs
lbs
Links to Find:
Propulsion Efficiency (jet e
n p = (2V 1 ) / (V 2 +
Propulsion Efficiency (jet engine)
Inlet (flight) velocity
Thrust Equation
Exit Velocity
Specific Fuel Consumption (ct)
Fuel Flow (when ct and Thrust known)
Angle of Climb (steady velocity)
Rate of Climb, when climb angle and velocity known
Rate of Climb, when V, W, Ta, Tr are known
Specific Range
Horsepower (when V is in knots)
Equivalent Shaft HP (Turboprop)
Thrust HP or Propeller Efficiency
Propulsion Efficiency (n p )
opulsion Efficiency (jet engine)
p
Thrust Equation
= (2V 1 ) / (V 2 + V 1 )
T = Q (V 2 - V 1 )
V1
65
ft/s
Mass Airflow
Q
0.5
slug/s
V2
85
ft/s
Inlet (flight) velocity
V1
65
ft/s
Exit Velocity
V2
85
ft/s
=
10.0
=
0.9
unitless
Thrust (T)
lb
Thrust Equation
T = ρAV (V 2 - V 1 )
slugs/ft3
Air Density
ρ
0.6
Cross-sectional Area
A
5
Velocity (airflow)
V
25
ft2
ft/s
Inlet (flight) velocity
V1
65
ft/s
Exit Velocity
V2
85
ft/s
=
1,500.0
Thrust (T)
lb
Specific Fuel Consumption (ct)
Angle of Climb (steady vel
c t = Fuel Flow / Thrust
sin γ = (Ta - Tr) / W
Fuel Flow
FF
850
lb/hr
Thrust Available
Thrust
T
1500
lb
Thrust Required
Acft Weight
SFC (c t )
=
0.567
1/hr
sin γ
climb angle ( γ)
Fuel Flow (when ct and Thrust known)
FF = Thrust * c t
Specific Fuel Cons.
ct
0.567
1/hr
Thrust
T
1500
lb
Fuel Flow
=
850.5
lb/hr
Angle of Climb (steady velocity)
Rate of Climb, when climb angle a
sin γ = (Ta - Tr) / W
ROC = V k * si
Ta
4200
lb
climb angle
Tr
830
lb
Acft Velocity
W
12000
lb
sin γ
=
0.280833 unitless
16.3
ROC
degrees
Rate of Climb, when V, W, Ta
ROC = Vk * [ (Ta - T
Acft Velocity
Thrust Available
Thrust Required
Acft Weight
ROC
f Climb, when climb angle and velocity known
Specific Range
ROC = V k * sin γ
SR = V k / FF
γ
19.7
degrees
Velocity
Vk
Vk
240
nm/hr
Fuel Flow
FF
=
=
80.9
8,195.5
Specific Range
=
nm/hr
ft/min
te of Climb, when V, W, Ta, Tr are known
ROC = Vk * [ (Ta - Tr) / W]
Vk
150
nm/hr
Ta
4200
lb
Tr
2000
lb
W
10000
lb
=
=
33.0
3,342.9
nm/hr
ft/min
ific Range
Horsepower (when V is in knots)
V k / FF
P (HP) = (TV k ) / 325
260
nm/hr
Thrust
T
32000
900
lb/hr
Velocity
V
450
P (HP)
=
44,307.7
Power
=
2.4336E+07
0.3
nm/lb
lbs
nm/hr
HP
ft-lb/s
BHP
SHP
THP
Brake HP: measured at the engine crankshaft
Shaft HP: less than BHP; measured at propleller shaft
Thrust HP: (usable HP) less than SHP because of
propeller efficiency (η). This is also a type of HP and
must be converted to thrust units (ESHP)
Equivalent Shaft HP (Turboprop)
ESHP = SHP + (TV/325 η)
Shaft HP
SHP
25
HP
Thrust
T
3200
lb
Velocity
V
120
nm/hr
Propeller Efficiency
η
0.98
unitless
ESHP
=
1,230.7
HP
Thrust HP or Propeller Efficiency
THP = η* SHP or η = THP / SHP
Thrust HP (usable)
THP
25
HP
Shaft HP
SHP
55
HP
Propeller Efficiency
η
0.65
Prop Efficiency (η)
THP
=
=
0.4545
35.8
unitless
unitless
HP
Links to Find:
10.1 - Velocity
V = V 0 + at
Conversion Factors Table
Acceleration (thrust, drag, friction & weight)
Velocity, when initial Velocity, accel & time known
Effect of Weight change on Velocity
Distance (when V0, time & accel known)
Distance (when velocity and acceleration known)
Distance (determining from new accel or velocity)
Effect of Weight change on distance
Effect of Air Density (altitude) on distance
Effect of Headwind on TO distance
Effect of Tailwind on TO distance
Initial Velocity
Vo
Acceleration
a
Time
t
Velocity
=
0.1 - Velocity
10.2 - Distance (V0, a & t known)
= V 0 + at
s = V 0 t + .5(at 2 )
ft/s
ft/s
s
0.0
2
ft/s
Initial Velocity
Vo
0
ft/s
Acceleration
a
12
Time
t
28.5
ft/s2
s
Distance (s)
=
4,873.5
ft
10.3 - Distance (starting from an initial velocity)
s = (V 2 - V 0 2 ) / 2a
Vo
Initial Velocity
0
ft/s
Final Velocity
V
253.5 ft/s
Acceleration
a
6.434
Distance (s)
=
4,994.0
ft/s2
ft
10.6 - Distance Ratio derived from Eg 10..3
s 2 = (V 2 /V 1 ) 2 *(a 1 /a 2 )*s 1
Velocity (new)
V2
ft/s
Velocity (known)
V1
ft/s
Acceleration (known)
a1
ft/s2
Acceleration (new)
a2
ft/s2
Distance (known)
s1
ft
New Distance
=
#DIV/0!
ft
10.5 - Acceleration (from thrust, Drag, Friction & Weight)
a = g (T-D-F) / W
Gravity's Accel
g
32.2
Thrust
T
4800
Drag
Friction Force
Weight
D
F
W
250
450
10000
Accleration
=
13.2
ft/s2
lb
lb
lb
lb
ft/s2
10.6a - Effect of Weight change on Velocity
10.7 - Effect of Weight change on distanc
s 2 = (W 2 /W 1 ) 2 * s 1
V 2 = √(W 2 /W 1 )*V 1
Velocity (known)
V1
20
ft/s
Takeoff Distance (known)
s1
Weight (known)
W1
4
Weight (known)
W1
Weight (new)
W2
16
lb
lb
Weight (new)
W2
New Velocity
=
40.0
New Distance
=
ft/s
Weight change on distance
W 2 /W 1 ) 2 * s 1
2270
ft
10000
lb
lb
11000
2,746.7
10.8 - Effect of air density (altitude) change on distance
(non-turbocharged engines)
s 2 = (1/ σ2 ) 2 * s 1
ft
Distance (known)
s1
New Air density ratio
σ2
ft
0.8617 lb
New Distance
=
3,057.1
2270
ft
10.9 - Effect of air density (altitude) change on distance
(turbocharged engines)
s 2 = (1/ σ2 ) * s 1
Distance (known)
s1
2500
New Air density ratio
σ2
0.762
New Distance
=
3,280.8
ft
lb
ft
10.10 - Effect of Headwind on takeoff distance
s 2 = [1-(V w /V 1 )] 2 * s 1
Distance (known)
s1
1200
Takeoff Velocity (VLOF)
V1
48
Headwind Velocity
Vw
12
=
675.00
New Distance
10.7 - Effect of Tailwind on takeoff distance
s 2 = [1+(V w /V 1 )] 2 * s 1
ft
Distance (known)
s1
ft/s
ft/s
Takeoff Velocity (VLOF)
V1
Headwind Velocity
Vw
ft
New Distance
=
ailwind on takeoff distance
V w /V 1 )] 2 * s 1
1200
48
12
1,875.00
ft
ft/s
ft/s
ft
11.1 - Glide Path Force Equation (Lift)
L = W cos γ
Acft Weight
W
2000
Glide Angle
γ
25
Lift
=
1,812.6
lb
degrees
lb
11.2 - Glide Path Force Equation (Drag)
L = W sin γ
Acft Weight
W
2000
Glide Angle
γ
25
Drag
=
845.2
lb
degrees
lb
11.3 - Maximum Glide Angle
γ = tan -1 (1/LD max )
12
(L/D)MAX
Best Glide Angle ( γ)
=
4.8
Calculate Landing Distance
s = V 0 2 /2a
V0
Landing Velocity
Deceleration
a
Landing Distance
=
degrees
Rate of Sink Equation
ROS = 101.3V k (D-T/W)
10.6a - Effect of Weight change on Velocity
V 2 = √(W 2 /W 1 )*V 1
Velocity
Vk
130
nm/hr
Drag (Tr)
D
3500
lb
Velocity (known)
V1
Thrust (Ta)
T
3000
Weight (known)
W1
Weight (new)
W
10000
lb
lb
Weight (new)
W2
Rate of Sink
=
658.5
New Velocity
=
ft/min
e Landing Distance
= V 0 2 /2a
110
8
ft/s
11.6 - Effect of Headwind on Landing distance
s 2 = [1-(V w /V 1 )] 2 * s 1
s1
Distance (known)
1785 ft
ft/s2
Landing Velocity
V1
100
ft/s
Headwind Velocity
Vw
10
ft/s
=
1,445.9
756.3
ft
New Distance
Weight change on Velocity
ft
11.4- Effect of Weight change on Landing distance
(W 2 /W 1 )*V 1
s 2 = (W 2 /W 1 ) * s 1
20
ft/s
Distance (known)
s1
1785
ft
4
lb
lb
Weight (known)
W1
8000
Weight (new)
W2
13000
lb
lb
New Distance
=
2,900.6
16
40.0
ft/s
ft
11.7 - Effect of Tailwind on Landing distance
s 2 = [1+(V w /V 1 )] 2 * s 1
s1
Distance (known)
1785
ft
Landing Velocity
V1
100
ft/s
Headwind Velocity
Vw
10
ft/s
=
2,159.9
New Distance
11.8 - Approx. Velocity of Total dynamic Hydroplan
V H = 9 √P
ft
11.5 - Effect of Altitude on landing distance
(for non-thrust reverser acft)
s 2 = (1/ σ2 ) * s 1
Distance (known)
s1
1785
New Air density ratio
σ2
0.8
New Distance
=
2,231.3
ft
ft
Tire Inflation Press
P
Hydroplaning Velocity
=
of Total dynamic Hydroplaning
H
= 9 √P
43
59.0
lb/in2
nm/hr
CONVERSION FACTORS
multiply / divide
by
250
144
psf
psi
2.036
Hg"
psf
144
psi
psf
70.726
Hg"
Hg"
2.036
Hg"
70.726
knots
1.69
fps
1.15
mph
psi
psf
knots
knots
101.3
fpm
fps
422.5
0.5925
knots
fps
0.6818
mph
mph
1.467
fps
mph
0.869
knots
nautical mile (nm)
6076
ft
nautical mile (nm)
1.15
statue mile (sm)
ft
0.00016458
nautical mile (nm)
ft
0.00018939
statue mile (sm)
0.869
nautical mile (nm)
statute mile (sm)
statue mile (sm)
5280
slug
14.594
kg
kg
14.594
slug
(°F)
(F-32)*5/9
(°C)
(C*9/5)+32
59
add / subtract
Fahrenheit (°F)
-22.32
Rankine (°R)
445.9
Celsius (°C)
15
Kelvin (K)
Nautical mile (nm) = 6076 ft
Statute mile (sm) = 5280 ft
Velocity (knots(kt) or nm/hr) 1 kt = 1.69 ft/s
Velocity (mph) 1 kt = 1.15 mph
Horsepower = 550 ft-lb/s
Foot = 0.305 meters
Nautical mile = 1851 meters
Statue mile = 1609 meters
1 kg = 2.2 lbmass
1 Newton = 0.225 lbforce
ft
(°C)
(°F)
0.0
0.000
0.00
0.000
0.00
0.0
422.50
0.00
0.00
250.33
0.00
0.00
0.00
0.00
0.00
0.0000
0.00
0.00
0.0
0.0
0.00
15.0
32.0
to get
by
460
Fundamental Units
to get
psi
-460
Rankine (°R)
Fahrenheit (°F)
273.15
Kelvin (K)
-273.15
Celsius (°C)
437.7
-14.1
288.2
-273.2
British Grav. Sys (BGS) Term
Distance
feet
Time
second
Temperature
Fahrenheit
Absolute Temp
Rankine
Force
Pound-force (pounds x g)
BGS/English Unit
ft
Internat'l System (SI) Term
meter
SI Unit
Term
m
second
s
Runway Length
feet (ft)
Meters (m)
Celsius
°C
Altitude and Vertical distance
feet (ft)
feet
Kelvin
°K
Air Distance
nautical mile (nm)
nautical mile (nm)
kilogram
kg
°R
ft-lb/s
2
Mass
Airspeed
Temperature
Derived Units
British Grav. Sys (BGS) Term
BGS/English Unit
Force
Mass
Internat'l System (SI) Term
SI Unit
Newton (N)
kg-m/s 2
2
Velocity
Slug or Poundmass
feet/second (fps)
lb-s /ft
ft/s
meters/second
m/s
Acceleration
feet/second squared
ft/s 2
meters/second squared
m/s 2
Area
Square feet
ft 2
Square meters
m2
Volume
Cubic feet
liters
Pressure
pound/square foot (psf)
Pascal (Pa)
l or m
N/m2
Energy
foot-pounds
Joules(J)
N-m
Work
foot-pounds
Power
foot-pounds/second
Moment
foot-pounds
Momentum (p )
Mass x Velocity
ft
3
lb/ft 2
ft-lb
ft-lb
Joules(J)
3
N-m
ft-lb/s
Watts (W)
ft-lb
Newton meters
N-m
(lb- s /ft) x (ft/s) = lb-s
Mass*Velocity
kg-m/s
2
Aviation Terms
US Unit
ICAO Unit
s
°F
J/s
Atmospheric Pressure
knots (kt) = nm/hr
knots
Celsius
Celsius
Pounds/square inch (PSI)
or Hg"
Hectopascals
Remarks
Old Soviet bloc use meters
Old Soviet bloc use meters/s
Table 2.1,
Altitude
(ft)
0
1,000
2,000
3,000
4,000
5,000
6,000
7,000
8,000
9,000
10,000
15,000
20,000
25,000
30,000
35,000
36,089
40,000
45,000
50,000
60,000
70,000
80,000
90,000
100,000
150,000
200,000
250,000
Density Ratio, σ
1.0000
0.9711
0.9428
0.9151
0.8881
0.8617
0.8359
0.8106
0.7860
0.7620
0.7385
0.6292
0.5328
0.4481
0.3741
0.3099
0.2971
0.2462
0.1936
0.1522
DR
Difference
0.0289
0.0283
0.0277
0.0270
0.0264
0.0258
0.0253
0.0246
0.0240
0.0235
0.1093
0.0964
0.0847
0.0740
0.0642
0.0128
0.0509
0.0526
0.0414
𝜎
1.0000
0.9854
0.9710
0.9566
0.9424
0.9283
0.9143
0.9004
0.8866
0.8729
0.8593
0.7932
0.7299
0.6694
0.6117
0.5567
0.5450
0.4962
0.4400
0.3901
Table 2.1, Standard Atmosphere Table (pg 16)
Pressure Ratio, δ
1.0000
0.9644
0.9298
0.8962
0.8637
0.8320
0.8014
0.7716
0.7428
0.7148
0.6877
0.5643
0.4595
0.3711
0.2970
0.2353
0.2234
0.1851
0.1455
0.1145
PR
Difference
Temperature
(°F)
Temperature
(°R)
Temperature Ratio, θ
0.0356
0.0346
0.0336
0.0325
0.0317
0.0306
0.0298
0.0288
0.0280
0.0271
0.1234
0.1048
0.0884
0.0741
0.0617
0.0119
0.0383
0.0396
0.0310
59.00
55.43
51.87
48.30
44.74
41.17
37.60
34.04
30.47
26.90
23.34
5.51
-12.32
-30.15
-47.98
-65.82
-69.70
-69.70
-69.70
-69.70
519.00
515.43
511.87
508.30
504.74
501.17
497.60
494.04
490.47
486.90
483.34
465.51
447.68
429.85
412.02
394.18
390.30
390.30
390.30
390.30
1.0000
0.9931
0.9862
0.9794
0.9725
0.9656
0.9587
0.9519
0.9450
0.9381
0.9312
0.8969
0.8625
0.8281
0.7937
0.7594
0.7519
0.7519
0.7519
0.7519
Speed of Sound
(knots)
Kinematic Viscosity, v
2
(ft /s)
661.7
659.5
657.2
654.9
652.6
650.3
647.9
645.6
643.3
640.9
638.6
626.7
614.6
602.2
589.5
576.6
573.8
573.8
573.8
573.8
0.000158
0.000161
0.000165
0.000169
0.000174
0.000178
0.000182
0.000187
0.000192
0.000197
0.000202
0.000229
0.000262
0.000302
0.000349
0.000405
0.000419
0.000506
0.000643
0.000818
Acceleration due to
gravity, g
(ft/s2)
32.189
32.159
32.143
32.128
32.112
32.097
32.082
32.066
32.051
32.036
32.020
31.990
31.959
31.929
31.897
31.868
31.717
31.566
31.415
Links (to find:)
MASS / Weight
Mass / Weight
W = m * g // m = W/g
Find Acceleration (when Velocities and Time are known)
Find Acceleration (when Velocities and distance known)
Weight
Find Velocity (given time & acceleration)
Mass
Find Takeoff Velocity (given accel, distance, & initial Velocity)
Gravity Accel
Find Time (given Vel & Accel)
Find distance (given Vel & Accel)
Find distance (given initial Vel, Time & Accel)
PE
KE
TE
Work
Power
Horsepower
Friction
Ground Speed
Rate of Climb
Finding Ground Speed
V h = V a/c (Cos λ)
Acft TAS
Climb Angle
Ground Speed
Finding Rate of Climb Speed (R
V v = V a/c (Sin λ)
Acft TAS
Climb Angle
Rate of Climb
Find Acceleration (when Velocities an
known)
a = (V 2 - V 0 2 ) / 2s
Initial Velocity
Final Velocity
Distance traveled
a
MASS / Weight
W = m * g // m = W/g
W
10000
W
m
=
=
0.0
310.56
lbs
slugs
knots
degrees
knots
Vh
=
173.2
knots
knots
lbs
(lb-s2)/ft
m
g
32.2
ft/s2
Finding Ground Speed
V h = V a/c (Cos λ)
Va/c
200
30
?
λ
Vh
Finding Rate of Climb Speed (ROC)
V v = V a/c (Sin λ)
Va/c
200
knots
Vv
=
100.0
λ
30
degrees
Vv
=
10,140.0
Vv
?
knots
nd Acceleration (when Velocities and distance
known)
a = (V 2 - V 0 2 ) / 2s
V0
V
s
0
219.7
500
ft/s
ft/s
ft
=
48.3
ft/s2
fpm
Find Acceleration (when V & Time known)
a = ΔV / Δt = (V - V 0 ) / (t - t 0 )
Initial Vel
V0
0
fps
Meas Vel
V
219.7
fps
Initial Time
t0
0
sec
Meas Time
t
5
sec
Acceleration
a
?
ft/s
Find Velocity (given tim
V = V 0 + a(
a
a
a
=
43.9
ft/s2
= ######## ft/min2
= ######## mi/hr2
Initial Vel
Acceleration
Initial Time
Meas Time
2
Velocity
V
Vh
Ground Speed
Va/c
True Airspeed
Vv
Rate of Climb
λ
Climb Angle
Find Velocity (given time & acceleration)
V = V 0 + a(t - t 0 )
Find Takeoff Velocity (given accel, distance, &
initial Velocity)
V f = √(V 0 2 +2as)
V0
5
fps
a
24
Initial Vel
t0
1
ft/s2
sec
t
5
sec
V
?
fps
=
101.0
fps
V0
50
fps
Acceleration
a
10
Distance
s
500
ft/s2
ft
Vf
=
111.8
fps
Find Time (given Vel & Accel)
t = [(V - V 0 ) / a]+ t 0
Find distance (given Vel & Accel)
s = (V 2 - V 0 2 ) / 2a
Initial Vel
V0
0
fps
Initial Vel
V0
0
fps
Meas Vel
V
219.7
fps
Final Vel
V
24
fps
Initial Time
t0
0
sec
Accel
a
5
Acceleration
a
12.88
Distance
s
?
Time
t
?
ft/s2
sec
ft/s2
ft
=
1440.0
=
17.1
t
sec
s
ft
Find distance (given initial Vel, Time & Accel)
s = V 0 t + (at 2 / 2)
Initial Vel
Time
V0
0
fps
t
10
sec
Accel
a
5
Distance
s
?
=
250.0
s
ft/s
ft
2
ft
Potential Energy (PE)
PE = W * h
Weight
W
Height
h
Pot. Energy
PE
PE
=
Potential Energy (PE)
PE = W * h
Kinetic Energy (KE)
KE = (mV 2 ) / 2
(lb-s2)/ft
ft/s
10000
lbs
Mass
m
310.56
10000
ft
Velocity
V
422.5
ft-lbs
Kin. Energy
KE
?
KE
=
27,718,450.50
ft-lbs
2.772E+07
ft-lbs
?
100,000,000.00
ft-lbs
1.00E+08
ft-lbs
ft-lbs
Mechanical Energy (TE)
TE = PE + KE
TE
=
Work
w=F*D
Force
F
100
127,718,450.50
ft-lbs
Distance
D
150
1.277E+08
ft-lbs
Work
w
?
=
15,000.00
w
1.500E+04
rk
*D
Power
P = [(F * D) / time] OR P = F * V or P = W/t
Horsepower (when V is in ft/s)
HP = (F * V) / 550
lbs
Force
F
1500
lbs
Force
F
ft
Distance
D
10
ft
Distance
D
ft-lbs
time
t
1
sec
Velocity
V
ft-lbs
Power
P
?
ft-lbs/s
time
t
ft-lbs
P
=
15,000.0
ft-lbs/s
1.500E+04
ft-lbs/s
→
HP
=
Manually, from values above
HP
=
HP
=
sepower (when V is in ft/s)
HP = (F * V) / 550
Horsepower (when V is in knots)
HP = (TV k ) / 325
1500
lbs
Thrust
T
29000
10
ft
Velocity
V
10
ft/s
HP
1
sec
Friction (runwa
Fb = μ*N
lbs
Braking Force
425
knots
Normal Force
HP
?
ft-lbs/s
Coef of Friction
ft-lbs/s
HP
=
37,923.1
ft-lb/s
Fb
anually, from values above
27.3 ft-lbs/s
27.3 ft-lbs/s
HP
=
3.792E+04
ft-lb/s
μ (mu)
27.3
Friction (runway)
Fb = μ*N
Fb
1500
lbs
N
500
lbs
μ (mu)
0.53
no value
=
265.0
=
3.0
lbs
no value
Density (ρ-rho) / Mass (m) / Volume (V)
ρ=m/V
Links to Find:
Density (ρ-rho) / Mass (m) / Volume (V)
Mass
m
0.15
slugs
Pressure Alt (PA), given Altimeter Setting
Volume
V
3
Ambient Pressure P, given δ (Press Ratio)
Air Density
ρ (rho)
0.05
slugs/ft3
=
=
=
0.05
0.15
3.00
slugs/ft
ft3
Pressure Ratio (δ - delta)
Temperature Ratio (θ - theta)
Density Ratio (σ - sigma), given density
Density Ratio (σ - sigma) , given Press. & Temp.
Density Ratio (when δ is Interpolated from table)
Dynamic Pressure (q)
Density (ρ)
m
V
slugs
ft3
3
Altitude Pressure Ratio (δ - delta)
Temperature Ratio (θ - th
δ=P/P0
Ambient Static Press
Std SL Static Press
Press Ratio ( δ delta)
θ=T/T0
P
P0
13.75
psi or Hg"
Ambient Air Temp
29.92
psi or Hg"
Std SL Air Temp
=
0.45956
unitless
Find Ambient Pressure P , given δ
P= δ*P0
Press Ratio
Std SL Static Press
Ambient Pressure (P)
δ
P0
0.4595
29.92
unitless
psi or Hg"
=
13.75
psi or Hg"
Find Pressure Alt (PA), given Altimeter Setting
1) 29.92" Hg - Alt Setting = ΔP
2) ΔP / .001" = Δalt
3) Elevation + Δalt. = Pressure Alt. (PA)
Elevation
Altimeter Setting
Std Sea Level Pressure
Change in Pressure
Change in Altitude
Pressure Alt. (PA)
ΔP
Δ Alt
20,500
30.42
29.92
-0.50
-500
=
20,000
ft
Hg"
Hg"
Hg"
ft
ft
Temp Ratio ( θ theta)
Standard Day Parameters
Temperature Ratio (θ - theta)
Density Ratio (σ - sigma), given density
θ=T/T0
σ=ρ/ρ0
T
T0
=
437.7
°R / °K
Density
519
°R / °K
SL Density
ρ (rho)
ρ 0 (rho)
Density Ratio
σ (sigma)
0.84335
0.0012468 slugs/ft3
0.002378 slugs/ft3
unitless
unitless
Density Ratio ( σ)
Density (ρ)
=
=
0.5243
unitless
0.0000000 slugs/ft3
0.000E+00 slugs/ft3
Standard Day Parameters
(σ - sigma) Density Ratio (given Press. & Temp.)
Dynamic Pressure (q)
2
σ = δ /θ = (P / P 0 ) / (T / T 0 )
Static Press
q = .5(ρV )
P
P0
30.42
psi or Hg"
Velocity
29.92
psi or Hg"
Density ratio
T
T0
437.7
°R or °F
Density (air)
519
°R or °F
Dynamic Press
Press Ratio
δ (delta)
1.0167
unitless
Temp Ratio
θ (theta)
0.8434
unitless
=
1.2056
Std Sea Lvl Press
Absolute Temp
Std Sea Lvl Temp
Density Ratio ( σ)
unitless
Find Density Ratio (when δ is Interpolated from table)
σ = δ /θ
Altitude
20,500
ft
Indicated Temp
437.7
°R
Pressure Ratio
δ (delta)
0.4595
unitless
Temperature Ratio
θ (theta)
0.8434
unitless
=
0.5449
Density Ratio ( σ)
unitless
Dynamic Press (q)
Dynamic Pressure (q)
2
Links to Find:
q = .5(ρV )
V
338
fps
Density (ρ-rho) / Mass (m) / Volume (V)
σ
0.7385 unitless
Pressure Alt (PA), given Altimeter Setting
ρ
0.001756 slugs/ft3
?
lbs/ft2
Ambient Pressure P, given δ (Press Ratio)
q
Pressure Ratio (δ - delta)
Temperature Ratio (θ - theta)
=
100.31
lbs/ft
2
Density Ratio (σ - sigma), given density
Density Ratio (σ - sigma) , given Press. & Temp.
Density Ratio (when δ is Interpolated from table)
Dynamic Pressure (q)
V (KTAS)
113.3
120
140
160
180
190
200
220
240
260
Weight (W)
Wing Area (S)
Aspect Ratio (AR)
e
Temp
Sigma (∂)
CDP
CLmax at Stall
q= ∂ x
V^2/295
(lb/ft^2)
CL = W/qS
CDI=[1/
(πeAR)] CL^2
CDp
CD=
CDP+CDI
CL/CD
Dp=CDp q S
(lb)
Di = Cdi q S
(lb)
43.48
48.81
66.44
86.78
109.83
122.37
135.59
164.07
195.25
229.15
1.50
1.34
0.98
0.75
0.59
0.53
0.48
0.40
0.33
0.28
0.159
0.126
0.068
0.040
0.025
0.020
0.016
0.011
0.008
0.006
0.021
0.021
0.021
0.021
0.021
0.021
0.021
0.021
0.021
0.021
0.18
0.15
0.09
0.06
0.05
0.04
0.04
0.03
0.03
0.03
8.33
9.08
11.02
12.34
12.93
12.98
12.88
12.36
11.56
10.65
210.00
235.77
320.91
419.15
530.48
591.06
654.92
792.45
943.08
1106.81
1589.8
1416.0
1040.3
796.5
629.3
564.8
509.8
421.3
354.0
301.6
15000
230
5.3
0.85
Standard
1
0.021
1.5
295
Dt = Di + Dp
(lb)
1799.8
1651.8
1361.3
1215.7
1159.8
1155.9
1164.7
1213.7
1297.1
1408.4
Purchase answer to see full
attachment