# Fomal Logic Propositional Logic 20 questions Need Answered

Dec 2nd, 2014
Anonymous
Category:
History
Price: \$45 USD

Question description

Question 1

Select the conclusion that follows in a single step from the given premises:
1. ~R≡ ~R
2. N • ~T
3. R ⊃ ~(N • ~T)

 ∼T  2, Simp (N •∼T)⊃∼R  3, Trans ∼R  2, 3, MT R⊃(∼N∨∼∼T)  3, DM ∼R  1, Taut

Question 2

Select the conclusion that follows in a single step from the given premises:
1. N ∨ C
2. (N ∨ C) ⊃ (F ⊃ C)
3. ~C

 F⊃C  1, 2, MP N    1, 3, DS ∼F  2, 3, MT ∼N  1, 3, MT ∼C • R  3, Add

Question 3

Select the conclusion that follows in a single step from the given premises:
1. A
2. (A ⊃ ~T) ⊃ ~G
3. Q ⊃ (A ⊃ ~T)

 Q⊃(T⊃∼A)  3, Trans (Q⊃A)⊃∼T  3, Assoc A⊃(∼T •∼G)  2, Exp ∼T  1, 3, MP Q⊃∼G  2, 3, HS

Question 4

Select the conclusion that follows in a single step from the given premises:
1. D ⊃ H
2. ~D
3. ~(D ∨ S)

 ∼H  1, 2, MT ∼D∨(D⊃H)  2, Add H⊃D  1, Com S  2, 3, DS ∼D∨∼S  3, DM

Question 5

Select the conclusion that follows in a single step from the given premises:
1. ~U ⊃ (S • K)
2. R ⊃ (~U • ~U)
3. S ≡ ~U

 (∼U • S)⊃K  1, Exp R⊃U  2, DN R⊃∼U  2, Taut R⊃(S • K)  1, 2, HS (S⊃U) • (∼U⊃∼S)  3, Equiv

Question 6

Select the conclusion that follows in a single step from the given premises:
1. P • (~H ∨ D)
2. ~(~P • ~H)
3. (P ⊃ ~H) • (~P ⊃ H)

 P ≡∼H  3, Equiv ∼H∨D  1, Simp (P •∼H)∨D  1, Assoc P • (H⊃D)  1, Impl P • H  2, DN

Question 7

Select the conclusion that follows in a single step from the given premises:
1. ~(Q • ~S)
2. ~F ⊃ (Q • ~S)
3. H ∨(Q • ~S)

 (H • Q)∨(H •∼S)  3, Dist ∼Q∨S  1, DM F  1, 2, MT H  1, 3, DS ~~F 1, 2, MT

### Question 8

Select the conclusion that follows in a single step from the given premises:
1. Q ⊃ (A ∨ ~T)
2. T
3. A ∨ ~T

 Q⊃(∼∼A∨∼T)  1, DN (A∨∼T)⊃Q  1, Com (Q⊃A)∨∼T  1, Assoc Q  1, 3, MP A  2, 3, DS

Question 9

Select the conclusion that follows in a single step from the given premises:
1. (J • ~N) ∨ T
2. ~(J • ~N)
3. ~T

 T  1, 2, DS ∼J∨N  2, DM J •∼N  1, 3, DS J • (∼N∨T)  1, Assoc ∼J  2, Simp

Question 10

Select the conclusion that follows in a single step from the given premises:
1. (K • ~T) ∨ (K • ~H)
2. ~M ⊃ (K • ~H)
3. ~(K • ~H)

 ∼K∨H  3, DM K •∼T  1, 3, DS K • (∼T∨∼H)  1, Dist M  2, 3, MT (∼M • K)⊃∼H  2, Exp

Question 11

Select the conclusion that follows in a single step from the given premises:
1. ~I ∨ ~~B
2. M ⊃ ~I
3. I

 M⊃∼∼B  1, 2, HS ∼∼B  1, 3, DS ∼M  2, 3, MT ∼I⊃M  2, Com ∼(I •∼B)  1, DM

Question 12

Select the conclusion that follows in a single step from the given premises:
1. A
2. G ⊃ (A ⊃ ~L)
3. ~A ∨ ~G

 A∨G  3, DN (G⊃A)⊃∼L  2, Assoc ∼L  1, 2, MP ∼G  1, 3, DS G⊃(∼∼L⊃∼A)  2, Trans

Question 13

Select the conclusion that follows in a single step from the given premises:
1. (S • ~J) ∨ (~S • ~~J)
2. S ∨ ~S
3. ~J ⊃ P

 S  2, Taut ∼J∨∼∼J  1, 2, CD S ≡∼J  1, Equiv J∨P  3, Impl ∼P⊃J  3, Trans

Question 14

Select the conclusion that follows in a single step from the given premises:
1. (S ⊃ ~F) • (~F ⊃ B)
2. S ∨ ~F
3. ~F

 S⊃B  1, HS ∼F∨B  1, 2, CD S  2, 3, DS B  1, 3, MP ∼S  1, 3, MT

Question 15

Select the conclusion that follows in a single step from the given premises:
1. ~M ⊃ S
2. ~M
3. (M ∨ H) ∨ ~S

 H  2, 3, DS M∨H  3, Simp M∨(H∨∼S)  3, Assoc ∼S  1, 2, MP M∨S  1, Impl

Question 16

Select the conclusion that follows in a single step from the given premises:
1. G • ~A
2. K ⊃ (G • ~A)
3. G ⊃ M

 (K⊃G )⊃∼A 2, Exp K⊃(∼A • G)  2, Com (K⊃G) •∼A  2, Assoc K  1, 2, MP M  1, 3, MP

Question 17

Select the conclusion that follows in a single step from the given premises:
1. ~E ⊃ P
2. ~P
3. ~(P ∨ ~H)

 ∼H  2, 3, DS ∼P •∼(P∨∼H)  2, 3, Conj ∼P • H   3, DM E  1, 2, MT ∼P⊃E  1, Trans

Question 18

Select the conclusion that follows in a single step from the given premises:
1. N ≡ R
2. (N • ~R) ⊃ C
3. N

 (N⊃R)∨(R⊃N)  1, Equiv N • (∼R⊃C)  2, Assoc C⊃(N •∼R)  2, Com N⊃(∼R⊃C)  2, Exp R  1, 3, MP

Question 19

Select the conclusion that follows in a single step from the given premises:
1. N
2. R ⊃ ~N
3. ~C • (T ⊃ R)

 ∼C  3, Simp T⊃∼N  2, 3, HS (∼C • T)⊃R  3, Assoc ∼R  1, 2, MT N⊃∼R  2, Trans

Question 20

Select the conclusion that follows in a single step from the given premises:
1. ~N • ~F
2. K ⊃ (N • F)
3. U ∨ (K • ~N)

 ∼K  1, 2, MT (U∨K) •∼N  3, Assoc (K • N)⊃F  2, Exp (U∨K) • (U∨∼N)  3, Dist ∼(N • F)  1, DM

(Top Tutor) umesh kumar
School: UCLA

Studypool has helped 1,244,100 students

Review from student
Anonymous
" Awesome! Exactly what I wanted. "

1829 tutors are online

Brown University

1271 Tutors

California Institute of Technology

2131 Tutors

Carnegie Mellon University

982 Tutors

Columbia University

1256 Tutors

Dartmouth University

2113 Tutors

Emory University

2279 Tutors

Harvard University

599 Tutors

Massachusetts Institute of Technology

2319 Tutors

New York University

1645 Tutors

Notre Dam University

1911 Tutors

Oklahoma University

2122 Tutors

Pennsylvania State University

932 Tutors

Princeton University

1211 Tutors

Stanford University

983 Tutors

University of California

1282 Tutors

Oxford University

123 Tutors

Yale University

2325 Tutors