Simple math equations, math homework help

Anonymous
timer Asked: Jan 27th, 2017
account_balance_wallet $50

Question Description

1.) Let A={1,2,3} and B={1,2,3,4}. Let R and S be the relations from A to B whose matrices are given. Compute f$R^{-1}f$ .

f$M_{R}=egin{bmatrix} 1 & 0 & 1 &0 \  0 & 0 & 0 &1 \  1 & 1 & 1 &0  end{bmatrix}f$ , f$M_{S}=egin{bmatrix} 1 & 1 & 1 &1 \  0 & 0 & 0 &1 \  0 & 1 & 0 &1  end{bmatrix}f$

2.) In each part, sets A and B and a function from A to B are given. Determine whether the function is one to one or onto (or both or neither).
A=|R, B= {x | x is real and x > 0}; f(a)= |a|

3.) Use the universal set U= {a,b,c,..... y, z} and the characteristic function for the specified subset to compute the following function value:

floor

4.) Compute the values indicated. Note that if the domain of these functions is |Z+, then each function is the explicit formula for an infinite sequence. Thus sequences can be viewed as a special type of function.
g(n)= 5-2n
g(14)= ?

5.) Let f be the mod-10 function. Compute f(81).

6.) Let R and S be the given relations from A to B. Compute f$Rigcup{S}f$ .

A={a,b,c}; B= {1,2,3}
R= {(a,1), (b,1), (c,2), (c,3)}
S= {(a,1), (a,2), (b,1), (b,2)}

7.) Let f be the mod-10 function. Compute f(1057).

8.) Let A={1,2,3} and B={1,2,3,4}. Let R and S be the relations from A to B whose matrices are given. Compute f$ar{S}f$ .

f$M_{R}=egin{bmatrix} 1 & 0 & 1 &0 \  0 & 0 & 0 &1 \  1 & 1 & 1 &0  end{bmatrix}f$ , f$M_{S}=egin{bmatrix} 1 & 1 & 1 &1 \  0 & 0 & 0 &1 \  0 & 1 & 0 &1  end{bmatrix}f$

9.) Assume that

f[g(n)=5 - 2nf]

Compute:

f[g(129)f]

10.) Use the universal set U= {a,b,c,..... y, z} and the characteristic function for the specified subset to compute the following function value:

floor

11.) Let R and S be the given relations from A to B. Compute f$S^{-1}f$ .

A={a,b,c}; B= {1,2,3}
R= {(a,1), (b,1), (c,2), (c,3)}
S= {(a,1), (a,2), (b,1), (b,2)}

12.) Let A={1,2,3} and B={1,2,3,4}. Let R and S be the relations from A to B whose matrices are given. Compute f$Rigcup{S}f$ .
f$M_{R}=egin{bmatrix} 1 & 0 & 1 &0 \  0 & 0 & 0 &1 \  1 & 1 & 1 &0  end{bmatrix}f$ , f$M_{S}=egin{bmatrix} 1 & 1 & 1 &1 \  0 & 0 & 0 &1 \  0 & 1 & 0 &1  end{bmatrix}f$

13.) Use the universal set U= {a,b,c,..... y, z} and the characteristic function for the specified subset to compute the following function value:

floor

14.) Let A= {a,b,c,d} and B= {1,2,3}. Determine whether the relation R from A to B is a function.
R= {(a,3), (b,2), (c,1)}

True or False?

15.) Compute the values indicated. Note that if the domain of these functions is |Z+, then each function is the explicit formula for an infinite sequence. Thus sequences can be viewed as a special type of function.
g(n)= 5-2n
g(4)= ?

Tutor Answer

HKPJ
School: University of Maryland

thank you for the opportunity

1. Let A= {1, 2, 3} and B= {1, 2, 3, 4}. Let R and S be the relations from A to B whose
matrices are given. Compute

.

,
A.{(1,1), (1,3), (1,4), (2,4), (3,1), (3,2), (3,3), (3,4)}
B.{(1,1), (1,2), (1,3), (1,4), (2,4), (3,1), (3,2),(3,4)}
C.{(1,1), (1,2), (1,3), (1,4), (3,1), (3,2), (3,3), (3,4)}
D.{(1,1), (1,2), (1,3), (1,4), (2,4), (3,1), (3,2), (3,3), (3,4)}
2. In each part, sets A and B and a function from A to B are given. Determine whether the function is one

to one or onto (or both or neither).
A=B=|Z; f(a)= a-1
A. onto
B.one to one
C. bot...

flag Report DMCA
Review

Anonymous
Top quality work from this guy! I'll be back!

Similar Questions
Hot Questions
Related Tags
Study Guides

Brown University





1271 Tutors

California Institute of Technology




2131 Tutors

Carnegie Mellon University




982 Tutors

Columbia University





1256 Tutors

Dartmouth University





2113 Tutors

Emory University





2279 Tutors

Harvard University





599 Tutors

Massachusetts Institute of Technology



2319 Tutors

New York University





1645 Tutors

Notre Dam University





1911 Tutors

Oklahoma University





2122 Tutors

Pennsylvania State University





932 Tutors

Princeton University





1211 Tutors

Stanford University





983 Tutors

University of California





1282 Tutors

Oxford University





123 Tutors

Yale University





2325 Tutors