Deconstructing a square

label Algebra
account_circle Unassigned
schedule 1 Day
account_balance_wallet $5

Feb 13th, 2015

1. It is the only way. Rotating the square would throw off the triangles.

2. The area of the larger square is exactly twice as large as the smaller square.

the larger square is a 5x5 square, making the area 25 sq. in.

the smaller square has sides that are the same as the hypotenuse of the triangles. The triangles each have 2 sides that are half of 5. When using Pythagorean Theorem of a^2+b^2=c^2, you find that the hypotenuse is 3.5355 in. Thus, the smaller square is 3.5355x3.5355, which makes an area of 12.5.

Thus, the larger square is proportionally twice as large as the smaller square.

Feb 13th, 2015

Did you know? You can earn $20 for every friend you invite to Studypool!
Click here to
Refer a Friend
...
Feb 13th, 2015
...
Feb 13th, 2015
Jun 28th, 2017
check_circle
Mark as Final Answer
check_circle
Unmark as Final Answer
check_circle
Final Answer

Secure Information

Content will be erased after question is completed.

check_circle
Final Answer