Discrete Math

Nov 24th, 2013
Price: $40 USD

Question description

I need 12 problems done for a discrete math class.....the two below are examples....there are over 30 problems to choose from (you can pick)

Example 1

12. a) Prove that (cos θ + i sin θ)2 _ cos 2θ + i sin 2θ,where i C and i2 _ −1.

b) Using induction, prove that for all n Z+,(cos θ + i sin θ)n _ cos + i sin nθ.

(This result is known as DeMoivre’s Theorem.)

c) Verify that 1 + i _√2(cos 45◦ + i sin 45◦), and compute(1 + i)100.

Example 2

2. For each of the following functions f : Z→Z, determine

whether the function is one-to-one and whether it is onto. If the

function is not onto, determine the range f (Z).

a) f (x) x + 7 b) f (x) 2x − 3

c) f (x) −x + 5 d) f (x) x2

e) f (x) x2 + x f ) f (x) x3

Tutor Answer

(Top Tutor) Farrukh
School: University of Virginia

Studypool has helped 1,244,100 students

Review from student
" Outstanding Job!!!! "
Ask your homework questions. Receive quality answers!

Type your question here (or upload an image)

1820 tutors are online

Brown University

1271 Tutors

California Institute of Technology

2131 Tutors

Carnegie Mellon University

982 Tutors

Columbia University

1256 Tutors

Dartmouth University

2113 Tutors

Emory University

2279 Tutors

Harvard University

599 Tutors

Massachusetts Institute of Technology

2319 Tutors

New York University

1645 Tutors

Notre Dam University

1911 Tutors

Oklahoma University

2122 Tutors

Pennsylvania State University

932 Tutors

Princeton University

1211 Tutors

Stanford University

983 Tutors

University of California

1282 Tutors

Oxford University

123 Tutors

Yale University

2325 Tutors