Mathematics
A soft-drink vendor at a popular beach analyzes his sales records and finds that

Question Description

P(x) = 0.001x2 + 3x − 1825.

What is his maximum profit per day?

How many cans must he sell for maximum profit?
cans

P(x) = −0.001x2 + 3x − 1825.

P(x) = -0.001 (x2-3000x) -1825

P(X) = -0.001 (x-1500)2+ 15002*0.001-1825

P(X) = -0.001 (x-1500)2+ 2250-1825

P(X) = -0.001 (x-1500)2+425

It will have maximum at x=1500 . Maximum value =425

1500 cans

Max value =425

UCLA
Review

Anonymous
Top quality work from this tutor! I’ll be back!

Anonymous
Heard about Studypool for a while and finally tried it. Glad I did caus this was really helpful.

Anonymous
Thank you! Reasonably priced given the quality

Studypool
4.7
Trustpilot
4.5
Sitejabber
4.4

Brown University

1271 Tutors

California Institute of Technology

2131 Tutors

Carnegie Mellon University

982 Tutors

Columbia University

1256 Tutors

Dartmouth University

2113 Tutors

Emory University

2279 Tutors

Harvard University

599 Tutors

Massachusetts Institute of Technology

2319 Tutors

New York University

1645 Tutors

Notre Dam University

1911 Tutors

Oklahoma University

2122 Tutors

Pennsylvania State University

932 Tutors

Princeton University

1211 Tutors

Stanford University

983 Tutors

University of California

1282 Tutors

Oxford University

123 Tutors

Yale University

2325 Tutors