The Sample Proportion

Statistics
Tutor: None Selected Time limit: 1 Day

Mar 10th, 2015

Sample size is 275: Generally we require sample size > 30 for the normal distribution, so this is enough.

Standard deviation of a proportion p is given by sqrt(p(1-p))

sd = sqrt(0.2 x 0.8)

= 0.4

So the standard error for a sample mean is given by sd/sqrt(n) where n is the sample size:

SEM = sd/sqrt(n)

= 0.4/sqrt(275)

0.0241

So the probability that fewer than 15% involve driver distraction in our sample is the normal cdf at .15 with mean = .2 and sd = SEM = 0.0241:

Norm.cdf (sample mean, population mean, standard error)

= Norm.cdf (0.15, 0.2, 0.0241)

0.0191

And the probability that more than 25% involve driver distraction is the same (it is also 5% from the population mean, and the normal distribution is symmetric around the mean).

So the probability that between 15% and 25% involve driver distraction will be:

1 - 0.0191 - 0.0191

= 0.9618


Mar 10th, 2015

Studypool's Notebank makes it easy to buy and sell old notes, study guides, reviews, etc.
Click to visit
The Notebank
...
Mar 10th, 2015
...
Mar 10th, 2015
May 23rd, 2017
check_circle
Mark as Final Answer
check_circle
Unmark as Final Answer
check_circle
Final Answer

Secure Information

Content will be erased after question is completed.

check_circle
Final Answer