Large Sample Estimation of a Population Proportion

Statistics
Tutor: None Selected Time limit: 1 Day

Mar 12th, 2015

a) The best point estimate is the sample proportion, which is:

42/900 = 0.046666667

b) The sample size is 900, so it's certainly large enough to construct a confidence interval... it sounds as though you're being asked to quote a "rule-of-thumb" you may have been taught though, so check your notes for that.

c) Since we don't know the population standard deviation, only that for the sample, we should use a t-distribution here, with df = n-1 = 899. The critical t-stat for an 80% confidence interval will be:

t_crit = t.inv(p=0.9,df=899) = 1.282493968

The sample standard deviation is given by sqrt(p(1-p)) = sqrt(0.046666(1-0.046666)) 

0.210923894

The standard error is sample sd / sqrt(n) = 0.210923894/sqrt(900)

SEM = 0.007030796

So the 95% confidence interval for the sample mean is given by 

sample mean +/- t_crit x SEM

= 0.046666667 +/- 1.282493968 x 0.007030796

= [0.0376 to 0.0557]


Mar 12th, 2015

Are you studying on the go? Check out our FREE app and post questions on the fly!
Download on the
App Store
...
Mar 12th, 2015
...
Mar 12th, 2015
Dec 4th, 2016
check_circle
Mark as Final Answer
check_circle
Unmark as Final Answer
check_circle
Final Answer

Secure Information

Content will be erased after question is completed.

check_circle
Final Answer