Use Hypothesis Testing and the data

User Generated

1fninaanu

Humanities

Description

Use Hypothesis Testing and the data in the course materials folder to analyze the difference in milk production between California and Wisconsin from 1900 through 1995 and decide if there is a significant difference in production between the states. Please remember to:

  • Develop a research question.
  • Formulate both a numerical and verbal hypothesis statement regarding your research issue.
  • What is the independent variable?
  • What is the dependent variable?
  • Select a level of significance.
  • Identify the test statistic.
  • Describe the results of your test, and explain how the findings from this hypothesis testing can be used to answer your research question.
  • Compare leas week's findings with this analysis.
  • Explain why two-factor ANOVA would have been a better statistic in analyzing this question.

https://www.lynda.com --ANOVA link

Unformatted Attachment Preview

1 Milk Cows & Production California Year 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1991 1991 1991 1991 1991 1991 1991 1991 1991 1991 1991 1991 1992 1992 1992 1992 1992 1992 1992 1992 1992 1992 1992 1992 1993 1993 1993 1993 1993 1993 1993 1993 1993 Wisconsin Period Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Pounds of Milk per Cow Milk Cows (000) 1118 1122 1126 1130 1133 1136 1138 1140 1142 1144 1146 1148 1150 1152 1153 1154 1155 1156 1156 1157 1157 1157 1158 1159 1160 1164 1169 1171 1174 1177 1182 1187 1191 1193 1196 1198 1202 1204 1207 1210 1212 1214 1218 1220 1222 1485 1360 1580 1560 1640 1580 1605 1590 1520 1540 1480 1510 1535 1430 1585 1555 1620 1560 1585 1595 1500 1530 1495 1540 1540 1465 1605 1570 1625 1680 1605 1550 1525 1575 1520 1560 1515 1400 1585 1575 1640 1575 1640 1630 1570 2 Production (000,000 lbs) 1660 1526 1779 1763 1858 1795 1826 1813 1736 1762 1696 1733 1765 1647 1828 1794 1871 1803 1832 1845 1736 1770 1731 1785 1786 1705 1876 1838 1908 1860 1897 1840 1816 1879 1818 1869 1821 1686 1913 1906 1988 1912 1998 1989 1919 Milk Cows (000) 1738 1733 1725 1730 1732 1735 1735 1729 1730 1730 1729 1729 1717 1705 1695 1689 1688 1681 1678 1673 1671 1662 1657 1655 1645 1638 1623 1622 1617 1617 1617 1613 1611 1610 1603 1596 1584 1578 1573 1562 1552 1546 1538 1533 1523 1993 1993 1993 1994 1994 1994 1994 1994 1994 1994 1994 1994 1994 1994 1994 1995 1995 1995 1995 1995 1995 1995 1995 1995 1995 1995 1995 1996 1996 1996 1996 1996 1996 1996 1996 1996 1996 1996 1996 1997 1997 1997 1997 1997 1997 1997 1997 1997 1997 Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct 1224 1226 1228 1230 1233 1236 1239 1243 1247 1251 1254 1259 1263 1267 1270 1272 1275 1279 1283 1287 1291 1296 1300 1305 1309 1314 1319 1322 1326 1329 1335 1341 1347 1351 1356 1362 1367 1373 1378 1382 1384 1385 1387 1389 1390 1391 1392 1394 1395 1600 1540 1585 1630 1490 1710 1705 1770 1715 1740 1725 1675 1710 1640 1685 1660 1515 1690 1660 1730 1645 1685 1655 1580 1620 1545 1585 1595 1505 1635 1620 1665 1590 1615 1570 1570 1620 1570 1605 1575 1465 1705 1700 1740 1665 1715 1700 1620 1685 3 1958 1888 1946 2005 1837 2114 2112 2200 2139 2177 2163 2109 2160 2078 2140 2112 1932 2162 2130 2227 2124 2184 2152 2062 2121 2030 2091 2109 1996 2173 2163 2233 2142 2182 2129 2138 2215 2156 2212 2177 2028 2361 2358 2417 2314 2386 2366 2258 2351 1514 1505 1502 1495 1489 1483 1487 1488 1495 1500 1500 1498 1498 1497 1499 1500 1498 1498 1496 1494 1492 1490 1488 1485 1482 1480 1478 1475 1470 1470 1465 1460 1455 1448 1441 1435 1428 1421 1414 1408 1404 1400 1395 1393 1392 1392 1390 1390 1388 1997 1997 1998 1998 1998 1998 1998 1998 1998 1998 1998 1998 1998 1998 1999 1999 1999 1999 1999 1999 1999 1999 1999 1999 1999 1999 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov 1397 1400 1402 1406 1408 1411 1414 1417 1421 1424 1428 1432 1436 1438 1443 1444 1451 1455 1457 1464 1468 1470 1476 1480 1482 1484 1493 1500 1506 1510 1516 1523 1529 1536 1541 1547 1553 1558 1563 1566 1570 1575 1581 1586 1591 1596 1602 1607 1613 1620 1645 1670 1480 1665 1640 1720 1635 1625 1595 1530 1650 1590 1655 1690 1555 1795 1770 1825 1710 1710 1770 1705 1760 1715 1780 1815 1705 1820 1810 1845 1755 1820 1745 1685 1735 1665 1735 1760 1615 1790 1770 1825 1755 1770 1765 1690 1745 1685 4 2263 2303 2341 2081 2344 2314 2432 2317 2309 2271 2185 2363 2283 2380 2439 2245 2605 2575 2659 2503 2510 2602 2517 2605 2542 2642 2710 2558 2741 2733 2797 2673 2783 2680 2597 2684 2586 2703 2751 2529 2810 2788 2885 2783 2816 2817 2707 2804 2718 1385 1382 1378 1376 1373 1368 1368 1368 1366 1366 1366 1366 1368 1370 1368 1366 1366 1365 1366 1368 1368 1366 1364 1362 1362 1360 1358 1355 1352 1349 1347 1345 1345 1343 1339 1336 1334 1330 1322 1310 1300 1295 1295 1290 1288 1282 1282 1281 1280 2001 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2004 2004 2004 2004 2004 2004 2004 2004 2004 2004 2004 2004 2005 2005 2005 2005 2005 2005 2005 2005 2005 2005 2005 2005 Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1619 1624 1628 1633 1638 1642 1646 1652 1656 1662 1664 1666 1667 1672 1676 1681 1685 1685 1684 1690 1693 1695 1698 1694 1697 1701 1706 1710 1716 1720 1724 1729 1733 1737 1740 1741 1741 1739 1742 1744 1747 1751 1753 1756 1759 1762 1765 1770 1771 1735 1755 1625 1835 1800 1880 1810 1815 1815 1705 1770 1695 1770 1790 1655 1850 1800 1835 1765 1755 1755 1670 1720 1665 1740 1760 1675 1815 1790 1830 1755 1780 1775 1715 1770 1700 1775 1770 1635 1850 1825 1880 1815 1780 1795 1750 1785 1725 1795 5 2809 2850 2646 2997 2948 3087 2979 2998 3006 2834 2945 2824 2951 2993 2774 3110 3033 3092 2972 2966 2971 2831 2921 2821 2953 2994 2858 3104 3072 3148 3026 3078 3076 2979 3080 2960 3090 3078 2848 3226 3188 3292 3182 3126 3157 3084 3151 3053 3179 1280 1279 1278 1276 1275 1272 1270 1265 1265 1268 1268 1266 1266 1265 1265 1263 1260 1257 1256 1255 1254 1253 1250 1249 1247 1245 1245 1244 1242 1242 1241 1240 1240 1239 1238 1237 1236 1235 1234 1233 1234 1234 1235 1236 1236 1237 1238 1238 1239 Pounds of Milk Production per Cow (000,000 lbs) 1145 1990 1075 1863 1225 2113 1205 2085 1265 2191 1225 2125 1220 2117 1185 2049 1105 1912 1120 1938 1075 1859 1125 1945 1160 1992 1085 1850 1230 2085 1220 2061 1285 2169 1215 2042 1210 2030 1200 2008 1130 1888 1150 1911 1095 1814 1160 1920 1195 1966 1145 1876 1245 2021 1215 1971 1300 2102 1300 2102 1315 2126 1285 2073 1190 1917 1200 1932 1145 1835 1205 1923 1230 1948 1130 1783 1280 2013 1265 1976 1360 2111 1325 2048 1300 1999 1245 1909 1180 1797 6 1180 1125 1185 1205 1100 1260 1255 1360 1325 1330 1300 1225 1240 1175 1225 1265 1165 1315 1295 1390 1355 1350 1300 1250 1255 1200 1255 1290 1215 1325 1290 1345 1305 1320 1310 1255 1285 1220 1285 1315 1210 1355 1330 1420 1410 1415 1400 1305 1320 1787 1693 1780 1801 1638 1869 1866 2024 1981 1995 1950 1835 1858 1759 1836 1898 1745 1970 1937 2077 2022 2012 1934 1856 1860 1776 1855 1903 1786 1948 1890 1964 1899 1911 1888 1801 1835 1734 1817 1852 1699 1897 1855 1978 1963 1970 1946 1814 1832 7 1250 1325 1360 1255 1410 1395 1480 1435 1445 1425 1360 1380 1325 1410 1415 1300 1465 1435 1510 1440 1420 1410 1360 1385 1340 1420 1445 1375 1495 1450 1515 1450 1480 1465 1405 1430 1370 1420 1445 1335 1495 1460 1530 1460 1455 1415 1385 1400 1365 1731 1831 1874 1727 1936 1908 2025 1963 1974 1947 1858 1885 1813 1932 1936 1776 2001 1959 2063 1970 1943 1926 1855 1886 1825 1931 1962 1863 2021 1956 2041 1950 1991 1967 1881 1910 1828 1889 1910 1749 1944 1891 1981 1883 1874 1814 1776 1793 1747 8 1435 1460 1350 1510 1475 1525 1450 1455 1470 1405 1420 1385 1465 1500 1370 1530 1480 1540 1505 1515 1495 1430 1465 1410 1485 1505 1405 1510 1485 1560 1485 1520 1510 1440 1475 1415 1490 1515 1400 1560 1540 1630 1590 1600 1595 1510 1535 1480 1550 1837 1867 1725 1927 1881 1940 1842 1841 1860 1782 1801 1753 1855 1898 1733 1932 1865 1936 1890 1901 1875 1792 1831 1761 1852 1874 1749 1878 1844 1938 1843 1885 1872 1784 1826 1750 1842 1871 1728 1923 1900 2011 1964 1978 1971 1868 1900 1832 1920 9
Purchase answer to see full attachment
User generated content is uploaded by users for the purposes of learning and should be used following Studypool's honor code & terms of service.

Explanation & Answer

hello there, the milk production between California and Wisconsin in the excel attachment is from 1990 to 2005, yet in the question you require hypothesis testing for milk production between California and Wisconsin from 1900 through 1995. the question and data provided do not match. give clarification for that. thanks
Attached.

Running Head: Hypothesis Testing

1

Hypothesis Testing
Institutional Affiliation
Date

Hypothesis Testing

2

Research Question
Is there a significant difference in milk production between California and Wisconsin from 1990
through 1995?
Numerical and Verbal Hypothesis Statement.
Verbal Hypothesis;
H0: There is no significance difference in production between California and Wisconsin from
1990 through 1995
HA: There is significance difference in production between California and Wisconsin from 1990
through 1995
Numerical Hypothesis
H0: µ₁ = µ₂
HA: µ₁ ≠ µ₂
Independent Variable
The variable that is considered independent here is California and Wisconsin.
Dependent Variable
The difference in milk production between California and Wisconsin from 1990 through 1995 is
the dependent variable.
Level of Significance
The suitable level of significance for this sample statistic is; ∝=0.05.

Hypothesis Testing

3

Test Statistic
When the population standard deviations are unknown we estimate them using the sample
variance.
The test statistic is given by;
Z=

𝑋₁−𝑋₂
𝜕₁²
𝜕₂²
√ +√
𝑛₁
𝑛₂

The mean difference = X1 – X2 = 1944-1916 = 28 (000,000 lbs.)
Z=

28
1912637
996997

+√
72
72

Z = 0.0996
This is a two tailed test with a sample size of 72 observations. The critical value will be;
−1.96 ≤Z≤ 1.96
Conclusion
Since the test statistic of 0.0996 lies within the critical region we I fail to reject the null
hypothesis. Therefore, we can conclude that the production in California and that of Wisconsin is
the same (Quinn & Keough, 2012).
Two-factor ANOVA
The reason why the two-factor ANOVA would have been a better test of statistic is that analysis
of variances first analyzes the variance within one sample and then analyzes the variance
between the two samples. This ensures that the mean in production between the periods in one
sample is fir...

Similar Content

Related Tags