Calculus help integrals

Calculus
Tutor: None Selected Time limit: 1 Day

verify that F(x) is an antiderivative of the integrand f(x) and use Part 2 of the Fundamental Theorem to evaluate the definite integrals.

4. ⌡0 3⌠  (x^2 + 4x – 3 ) dx , F(x) = 1/3 x^3 + 2x^2 – 3x 

6. Given A(x) = ⌡0 X⌠ 2t dt, find A'(x)

Find indicated antiderivative

1. t^5-t^2/t dt

2. e to 1] 1/x dx

3. 5 ~ 2 radical x dx

4. 1000 to 1 (1/x^2) dx

5. e^10/x / x^2 dx

6. 1 ~ 0  e^2x dx

7. 1 ~ 0 10x * e^3x dx

8. 2~1 ln(x)/ x^2 dx

Apr 22nd, 2015

4. ⌡0 3⌠  (x^2 + 4x – 3 ) dx , F(x) = 1/3 x^3 + 2x^2 – 3x  yes it is 

6. Given A(x) = ⌡0 X⌠ 2t dt, find A'(x)

Find indicated antiderivative

1. t^5-t^2/t dt            ans  t^6/6-t^2/2+constant

2. e to 1] 1/x dx            ans.     -1

3. 5 ~ 2 radical x dx      ans   5.5679

4. 1000 to 1 (1/x^2) dx      ans  =0.99999999999

5. e^10/x / x^2 dx                 invalid q

6. 1 ~ 0  e^2x dx                    ans -3.69

7. 1 ~ 0 10x * e^3x dx             ans   -66.95  

8. 2~1 ln(x)/ x^2 dx                ans  -.1534


Apr 22nd, 2015

Did you know? You can earn $20 for every friend you invite to Studypool!
Click here to
Refer a Friend
...
Apr 22nd, 2015
...
Apr 22nd, 2015
May 24th, 2017
check_circle
Mark as Final Answer
check_circle
Unmark as Final Answer
check_circle
Final Answer

Secure Information

Content will be erased after question is completed.

check_circle
Final Answer