Time remaining:
Logic Theory Proof help!

label Philosophy
account_circle Unassigned
schedule 0 Hours
account_balance_wallet $5

(∃x)(Fx ⋅ Hx) ⊃ ~ (x)((Fx ∨ Gx) ⊃ ~ (Hx ∨ Gx))

Apr 24th, 2015

A conditional a CP --Assume the antecedent and deduce the consequent

A universal conditional a Universal/Conditional Proof -- Assume the instantiation of the antecedent and deduce the consequent

Otherwise  a Indirect Proof – Assume the negation of the conclusion and deduce a contraction, thus proving the conclusion.

(∃x)(Fx ⋅ Hx) ⊃ ~ (x)((Fx ∨ Gx) ⊃ ~ (Hx ∨ Gx))

1.  (∃x)(Fx ⋅ Hx)                                                           Assume

2.  Fv & (Gv V Hv)                                                                    1 EI

3.  Fv                                                                                          2 Simp

4.  Gv V Hv                                                                                2 Simp

5.  (∃x)(Fx)                                                                                3 EG

6.  (∃x)(Gy V Hy)                                                                      4 EG

7.  (∃x)(Fx) & (∃x)(Gy V Hy)                                                    5, 6 Conj

8.  (∃x)[Fx & (Gx V Hx)] É [(∃x)(Fx) & (∃x)(Gy V Hy)]           1-7 CP



Apr 24th, 2015

Did you know? You can earn $20 for every friend you invite to Studypool!
Click here to
Refer a Friend
...
Apr 24th, 2015
...
Apr 24th, 2015
Jun 28th, 2017
check_circle
Mark as Final Answer
check_circle
Unmark as Final Answer
check_circle
Final Answer

Secure Information

Content will be erased after question is completed.

check_circle
Final Answer