8.6 6 Please solve. Thanks!

Algebra
Tutor: None Selected Time limit: 1 Day

May 4th, 2015

rhettb9,

A rectangle has dimensions of length (L) and width (W). The area is defined as L * W, so we have L * W = 27. On the other hand, the perimeter of a rectangle is the sum of lengths of its sides: that is L + W + L + W = 2 * L + 2 * W. From the problem statement, 2 * L + 2 * W = 24. Factor the left-hand side of this equation to get 

2 *(L + W) = 24, then divide both sides by 2, getting L + W = 12. So, we know L + W = 12 and L * W = 27.

Now we have two equations in two unknowns: hard to solve. Approach? Express one of the two variables in terms of the other. Say, for example, express L in terms of W: If L + W = 12, then L = 12 - W. Now we have

L * W = 27 means that (12 - W) * W = 27. Multiply out the left-hand side, getting 12 * W - W^2 = 27. Bringing everything over to the right-hand side of the equals sign, we get 27 + W^2 - 12 * W = 0. Rewriting this in standard form, we have W^2 - 12 * W + 27 = 0. This can be factored as (W - 3) * (W - 9) = 0, which has W = 3 and W = 9 as solutions. If W = 3 then L = 9 and if W = 9, then W = 9 and L = 3. Usually we think of L > W, so L = 9 and W = 3 is the solution. Check: L * W = 9 * 3 = 27. Check L + W = 3 + 9 = 12.

May 4th, 2015

Studypool's Notebank makes it easy to buy and sell old notes, study guides, reviews, etc.
Click to visit
The Notebank
...
May 4th, 2015
...
May 4th, 2015
Mar 31st, 2017
check_circle
Mark as Final Answer
check_circle
Unmark as Final Answer
check_circle
Final Answer

Secure Information

Content will be erased after question is completed.

check_circle
Final Answer