Algebra 2 - Using Quadratic Formula/ a-c for each quadratic equation

Algebra
Tutor: None Selected Time limit: 1 Day

These are homework questions that I have, and need help to solve them.

1. 4x^2 - 9 = -7x - 4

2. 12x^2 + 9x - 2 = -17

3. 2x^2 + 3x - 3 = 0

4. 6x^2 + 5x - 1 = 0

5. 3x^2 - 3x + 8 = 0

6. -5x^2 + 4x + 1 = 0

7. -3x^2 - 7x + 2 = 6

8. x^2 + 2x - 4 = -9

May 8th, 2015

  1. Simplifying
    12x2 + 9x + 15 = 0
    
    Reorder the terms:
    15 + 9x + 12x2 = 0
    
    Solving
    15 + 9x + 12x2 = 0
    
    Solving for variable 'x'.
    
    Factor out the Greatest Common Factor (GCF), '3'.
    3(5 + 3x + 4x2) = 0
    
    Ignore the factor 3.
    

    Subproblem 1

    Set the factor '(5 + 3x + 4x2)' equal to zero and attempt to solve: Simplifying 5 + 3x + 4x2 = 0 Solving 5 + 3x + 4x2 = 0 Begin completing the square. Divide all terms by 4 the coefficient of the squared term: Divide each side by '4'. 1.25 + 0.75x + x2 = 0 Move the constant term to the right: Add '-1.25' to each side of the equation. 1.25 + 0.75x + -1.25 + x2 = 0 + -1.25 Reorder the terms: 1.25 + -1.25 + 0.75x + x2 = 0 + -1.25 Combine like terms: 1.25 + -1.25 = 0.00 0.00 + 0.75x + x2 = 0 + -1.25 0.75x + x2 = 0 + -1.25 Combine like terms: 0 + -1.25 = -1.25 0.75x + x2 = -1.25 The x term is 0.75x. Take half its coefficient (0.375). Square it (0.140625) and add it to both sides. Add '0.140625' to each side of the equation. 0.75x + 0.140625 + x2 = -1.25 + 0.140625 Reorder the terms: 0.140625 + 0.75x + x2 = -1.25 + 0.140625 Combine like terms: -1.25 + 0.140625 = -1.109375 0.140625 + 0.75x + x2 = -1.109375 Factor a perfect square on the left side: (x + 0.375)(x + 0.375) = -1.109375 Can't calculate square root of the right side. The solution to this equation could not be determined. This subproblem is being ignored because a solution could not be determined. The solution to this equation could not be determined.

  2. 2.
    
    Simplifying
    12x2 + 9x + -2 = -17
    
    Reorder the terms:
    -2 + 9x + 12x2 = -17
    
    Solving
    -2 + 9x + 12x2 = -17
    
    Solving for variable 'x'.
    
    Reorder the terms:
    -2 + 17 + 9x + 12x2 = -17 + 17
    
    Combine like terms: -2 + 17 = 15
    15 + 9x + 12x2 = -17 + 17
    
    Combine like terms: -17 + 17 = 0
    15 + 9x + 12x2 = 0
    
    Factor out the Greatest Common Factor (GCF), '3'.
    3(5 + 3x + 4x2) = 0
    
    Ignore the factor 3.
    

    Subproblem 1

    Set the factor '(5 + 3x + 4x2)' equal to zero and attempt to solve: Simplifying 5 + 3x + 4x2 = 0 Solving 5 + 3x + 4x2 = 0 Begin completing the square. Divide all terms by 4 the coefficient of the squared term: Divide each side by '4'. 1.25 + 0.75x + x2 = 0 Move the constant term to the right: Add '-1.25' to each side of the equation. 1.25 + 0.75x + -1.25 + x2 = 0 + -1.25 Reorder the terms: 1.25 + -1.25 + 0.75x + x2 = 0 + -1.25 Combine like terms: 1.25 + -1.25 = 0.00 0.00 + 0.75x + x2 = 0 + -1.25 0.75x + x2 = 0 + -1.25 Combine like terms: 0 + -1.25 = -1.25 0.75x + x2 = -1.25 The x term is 0.75x. Take half its coefficient (0.375). Square it (0.140625) and add it to both sides. Add '0.140625' to each side of the equation. 0.75x + 0.140625 + x2 = -1.25 + 0.140625 Reorder the terms: 0.140625 + 0.75x + x2 = -1.25 + 0.140625 Combine like terms: -1.25 + 0.140625 = -1.109375 0.140625 + 0.75x + x2 = -1.109375 Factor a perfect square on the left side: (x + 0.375)(x + 0.375) = -1.109375 Can't calculate square root of the right side. The solution to this equation could not be determined. This subproblem is being ignored because a solution could not be determined. The solution to this equation could not be determined.
    3.
    Simplifying
    2x2 + 3x + -3 = 0
    
    Reorder the terms:
    -3 + 3x + 2x2 = 0
    
    Solving
    -3 + 3x + 2x2 = 0
    
    Solving for variable 'x'.
    
    Begin completing the square.  Divide all terms by
    2 the coefficient of the squared term: 
    
    Divide each side by '2'.
    -1.5 + 1.5x + x2 = 0
    
    Move the constant term to the right:
    
    Add '1.5' to each side of the equation.
    -1.5 + 1.5x + 1.5 + x2 = 0 + 1.5
    
    Reorder the terms:
    -1.5 + 1.5 + 1.5x + x2 = 0 + 1.5
    
    Combine like terms: -1.5 + 1.5 = 0.0
    0.0 + 1.5x + x2 = 0 + 1.5
    1.5x + x2 = 0 + 1.5
    
    Combine like terms: 0 + 1.5 = 1.5
    1.5x + x2 = 1.5
    
    The x term is 1.5x.  Take half its coefficient (0.75).
    Square it (0.5625) and add it to both sides.
    
    Add '0.5625' to each side of the equation.
    1.5x + 0.5625 + x2 = 1.5 + 0.5625
    
    Reorder the terms:
    0.5625 + 1.5x + x2 = 1.5 + 0.5625
    
    Combine like terms: 1.5 + 0.5625 = 2.0625
    0.5625 + 1.5x + x2 = 2.0625
    
    Factor a perfect square on the left side:
    (x + 0.75)(x + 0.75) = 2.0625
    
    Calculate the square root of the right side: 1.436140662
    
    Break this problem into two subproblems by setting 
    (x + 0.75) equal to 1.436140662 and -1.436140662.
    
    

    Subproblem 1

    x + 0.75 = 1.436140662 Simplifying x + 0.75 = 1.436140662 Reorder the terms: 0.75 + x = 1.436140662 Solving 0.75 + x = 1.436140662 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-0.75' to each side of the equation. 0.75 + -0.75 + x = 1.436140662 + -0.75 Combine like terms: 0.75 + -0.75 = 0.00 0.00 + x = 1.436140662 + -0.75 x = 1.436140662 + -0.75 Combine like terms: 1.436140662 + -0.75 = 0.686140662 x = 0.686140662 Simplifying x = 0.686140662

    Subproblem 2

    x + 0.75 = -1.436140662 Simplifying x + 0.75 = -1.436140662 Reorder the terms: 0.75 + x = -1.436140662 Solving 0.75 + x = -1.436140662 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-0.75' to each side of the equation. 0.75 + -0.75 + x = -1.436140662 + -0.75 Combine like terms: 0.75 + -0.75 = 0.00 0.00 + x = -1.436140662 + -0.75 x = -1.436140662 + -0.75 Combine like terms: -1.436140662 + -0.75 = -2.186140662 x = -2.186140662 Simplifying x = -2.186140662

    Solution

    The solution to the problem is based on the solutions from the subproblems. x = {0.686140662, -2.186140662}
  3. 4.
    Simplifying
    6x2 + 5x + -1 = 0
    
    Reorder the terms:
    -1 + 5x + 6x2 = 0
    
    Solving
    -1 + 5x + 6x2 = 0
    
    Solving for variable 'x'.
    
    Begin completing the square.  Divide all terms by
    6 the coefficient of the squared term: 
    
    Divide each side by '6'.
    -0.1666666667 + 0.8333333333x + x2 = 0
    
    Move the constant term to the right:
    
    Add '0.1666666667' to each side of the equation.
    -0.1666666667 + 0.8333333333x + 0.1666666667 + x2 = 0 + 0.1666666667
    
    Reorder the terms:
    -0.1666666667 + 0.1666666667 + 0.8333333333x + x2 = 0 + 0.1666666667
    
    Combine like terms: -0.1666666667 + 0.1666666667 = 0.0000000000
    0.0000000000 + 0.8333333333x + x2 = 0 + 0.1666666667
    0.8333333333x + x2 = 0 + 0.1666666667
    
    Combine like terms: 0 + 0.1666666667 = 0.1666666667
    0.8333333333x + x2 = 0.1666666667
    
    The x term is 0.8333333333x.  Take half its coefficient (0.4166666667).
    Square it (0.1736111111) and add it to both sides.
    
    Add '0.1736111111' to each side of the equation.
    0.8333333333x + 0.1736111111 + x2 = 0.1666666667 + 0.1736111111
    
    Reorder the terms:
    0.1736111111 + 0.8333333333x + x2 = 0.1666666667 + 0.1736111111
    
    Combine like terms: 0.1666666667 + 0.1736111111 = 0.3402777778
    0.1736111111 + 0.8333333333x + x2 = 0.3402777778
    
    Factor a perfect square on the left side:
    (x + 0.4166666667)(x + 0.4166666667) = 0.3402777778
    
    Calculate the square root of the right side: 0.583333333
    
    Break this problem into two subproblems by setting 
    (x + 0.4166666667) equal to 0.583333333 and -0.583333333.
    
    

    Subproblem 1

    x + 0.4166666667 = 0.583333333 Simplifying x + 0.4166666667 = 0.583333333 Reorder the terms: 0.4166666667 + x = 0.583333333 Solving 0.4166666667 + x = 0.583333333 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-0.4166666667' to each side of the equation. 0.4166666667 + -0.4166666667 + x = 0.583333333 + -0.4166666667 Combine like terms: 0.4166666667 + -0.4166666667 = 0.0000000000 0.0000000000 + x = 0.583333333 + -0.4166666667 x = 0.583333333 + -0.4166666667 Combine like terms: 0.583333333 + -0.4166666667 = 0.1666666663 x = 0.1666666663 Simplifying x = 0.1666666663

    Subproblem 2

    x + 0.4166666667 = -0.583333333 Simplifying x + 0.4166666667 = -0.583333333 Reorder the terms: 0.4166666667 + x = -0.583333333 Solving 0.4166666667 + x = -0.583333333 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-0.4166666667' to each side of the equation. 0.4166666667 + -0.4166666667 + x = -0.583333333 + -0.4166666667 Combine like terms: 0.4166666667 + -0.4166666667 = 0.0000000000 0.0000000000 + x = -0.583333333 + -0.4166666667 x = -0.583333333 + -0.4166666667 Combine like terms: -0.583333333 + -0.4166666667 = -0.9999999997 x = -0.9999999997 Simplifying x = -0.9999999997

    Solution

    The solution to the problem is based on the solutions from the subproblems. x = {0.1666666663, -0.9999999997}
  4. 5.
    Simplifying
    3x2 + -3x + 8 = 0
    
    Reorder the terms:
    8 + -3x + 3x2 = 0
    
    Solving
    8 + -3x + 3x2 = 0
    
    Solving for variable 'x'.
    
    Begin completing the square.  Divide all terms by
    3 the coefficient of the squared term: 
    
    Divide each side by '3'.
    2.666666667 + -1x + x2 = 0
    
    Move the constant term to the right:
    
    Add '-2.666666667' to each side of the equation.
    2.666666667 + -1x + -2.666666667 + x2 = 0 + -2.666666667
    
    Reorder the terms:
    2.666666667 + -2.666666667 + -1x + x2 = 0 + -2.666666667
    
    Combine like terms: 2.666666667 + -2.666666667 = 0.000000000
    0.000000000 + -1x + x2 = 0 + -2.666666667
    -1x + x2 = 0 + -2.666666667
    
    Combine like terms: 0 + -2.666666667 = -2.666666667
    -1x + x2 = -2.666666667
    
    The x term is -1x.  Take half its coefficient (-0.5).
    Square it (0.25) and add it to both sides.
    
    Add '0.25' to each side of the equation.
    -1x + 0.25 + x2 = -2.666666667 + 0.25
    
    Reorder the terms:
    0.25 + -1x + x2 = -2.666666667 + 0.25
    
    Combine like terms: -2.666666667 + 0.25 = -2.416666667
    0.25 + -1x + x2 = -2.416666667
    
    Factor a perfect square on the left side:
    (x + -0.5)(x + -0.5) = -2.416666667
    
    Can't calculate square root of the right side.
    
    The solution to this equation could not be determined.
  5. 6.
    Simplifying
    -5x2 + 4x + 1 = 0
    
    Reorder the terms:
    1 + 4x + -5x2 = 0
    
    Solving
    1 + 4x + -5x2 = 0
    
    Solving for variable 'x'.
    
    Begin completing the square.  Divide all terms by
    -5 the coefficient of the squared term: 
    
    Divide each side by '-5'.
    -0.2 + -0.8x + x2 = 0
    
    Move the constant term to the right:
    
    Add '0.2' to each side of the equation.
    -0.2 + -0.8x + 0.2 + x2 = 0 + 0.2
    
    Reorder the terms:
    -0.2 + 0.2 + -0.8x + x2 = 0 + 0.2
    
    Combine like terms: -0.2 + 0.2 = 0.0
    0.0 + -0.8x + x2 = 0 + 0.2
    -0.8x + x2 = 0 + 0.2
    
    Combine like terms: 0 + 0.2 = 0.2
    -0.8x + x2 = 0.2
    
    The x term is -0.8x.  Take half its coefficient (-0.4).
    Square it (0.16) and add it to both sides.
    
    Add '0.16' to each side of the equation.
    -0.8x + 0.16 + x2 = 0.2 + 0.16
    
    Reorder the terms:
    0.16 + -0.8x + x2 = 0.2 + 0.16
    
    Combine like terms: 0.2 + 0.16 = 0.36
    0.16 + -0.8x + x2 = 0.36
    
    Factor a perfect square on the left side:
    (x + -0.4)(x + -0.4) = 0.36
    
    Calculate the square root of the right side: 0.6
    
    Break this problem into two subproblems by setting 
    (x + -0.4) equal to 0.6 and -0.6.
    
    

    Subproblem 1

    x + -0.4 = 0.6 Simplifying x + -0.4 = 0.6 Reorder the terms: -0.4 + x = 0.6 Solving -0.4 + x = 0.6 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '0.4' to each side of the equation. -0.4 + 0.4 + x = 0.6 + 0.4 Combine like terms: -0.4 + 0.4 = 0.0 0.0 + x = 0.6 + 0.4 x = 0.6 + 0.4 Combine like terms: 0.6 + 0.4 = 1 x = 1 Simplifying x = 1

    Subproblem 2

    x + -0.4 = -0.6 Simplifying x + -0.4 = -0.6 Reorder the terms: -0.4 + x = -0.6 Solving -0.4 + x = -0.6 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '0.4' to each side of the equation. -0.4 + 0.4 + x = -0.6 + 0.4 Combine like terms: -0.4 + 0.4 = 0.0 0.0 + x = -0.6 + 0.4 x = -0.6 + 0.4 Combine like terms: -0.6 + 0.4 = -0.2 x = -0.2 Simplifying x = -0.2

    Solution

    The solution to the problem is based on the solutions from the subproblems. x = {1, -0.2}
  6. 7.
    Simplifying
    -3x2 + -7x + 2 = 6
    
    Reorder the terms:
    2 + -7x + -3x2 = 6
    
    Solving
    2 + -7x + -3x2 = 6
    
    Solving for variable 'x'.
    
    Reorder the terms:
    2 + -6 + -7x + -3x2 = 6 + -6
    
    Combine like terms: 2 + -6 = -4
    -4 + -7x + -3x2 = 6 + -6
    
    Combine like terms: 6 + -6 = 0
    -4 + -7x + -3x2 = 0
    
    Factor out the Greatest Common Factor (GCF), '-1'.
    -1(4 + 7x + 3x2) = 0
    
    Ignore the factor -1.
    

    Subproblem 1

    Set the factor '(4 + 7x + 3x2)' equal to zero and attempt to solve: Simplifying 4 + 7x + 3x2 = 0 Solving 4 + 7x + 3x2 = 0 Begin completing the square. Divide all terms by 3 the coefficient of the squared term: Divide each side by '3'. 1.333333333 + 2.333333333x + x2 = 0 Move the constant term to the right: Add '-1.333333333' to each side of the equation. 1.333333333 + 2.333333333x + -1.333333333 + x2 = 0 + -1.333333333 Reorder the terms: 1.333333333 + -1.333333333 + 2.333333333x + x2 = 0 + -1.333333333 Combine like terms: 1.333333333 + -1.333333333 = 0.000000000 0.000000000 + 2.333333333x + x2 = 0 + -1.333333333 2.333333333x + x2 = 0 + -1.333333333 Combine like terms: 0 + -1.333333333 = -1.333333333 2.333333333x + x2 = -1.333333333 The x term is 2.333333333x. Take half its coefficient (1.166666667). Square it (1.361111112) and add it to both sides. Add '1.361111112' to each side of the equation. 2.333333333x + 1.361111112 + x2 = -1.333333333 + 1.361111112 Reorder the terms: 1.361111112 + 2.333333333x + x2 = -1.333333333 + 1.361111112 Combine like terms: -1.333333333 + 1.361111112 = 0.027777779 1.361111112 + 2.333333333x + x2 = 0.027777779 Factor a perfect square on the left side: (x + 1.166666667)(x + 1.166666667) = 0.027777779 Calculate the square root of the right side: 0.16666667 Break this problem into two subproblems by setting (x + 1.166666667) equal to 0.16666667 and -0.16666667.

    Subproblem 1

    x + 1.166666667 = 0.16666667 Simplifying x + 1.166666667 = 0.16666667 Reorder the terms: 1.166666667 + x = 0.16666667 Solving 1.166666667 + x = 0.16666667 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-1.166666667' to each side of the equation. 1.166666667 + -1.166666667 + x = 0.16666667 + -1.166666667 Combine like terms: 1.166666667 + -1.166666667 = 0.000000000 0.000000000 + x = 0.16666667 + -1.166666667 x = 0.16666667 + -1.166666667 Combine like terms: 0.16666667 + -1.166666667 = -0.999999997 x = -0.999999997 Simplifying x = -0.999999997

    Subproblem 2

    x + 1.166666667 = -0.16666667 Simplifying x + 1.166666667 = -0.16666667 Reorder the terms: 1.166666667 + x = -0.16666667 Solving 1.166666667 + x = -0.16666667 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-1.166666667' to each side of the equation. 1.166666667 + -1.166666667 + x = -0.16666667 + -1.166666667 Combine like terms: 1.166666667 + -1.166666667 = 0.000000000 0.000000000 + x = -0.16666667 + -1.166666667 x = -0.16666667 + -1.166666667 Combine like terms: -0.16666667 + -1.166666667 = -1.333333337 x = -1.333333337 Simplifying x = -1.333333337

    Solution

    The solution to the problem is based on the solutions from the subproblems. x = {-0.999999997, -1.333333337}

    Solution

    x = {-0.999999997, -1.333333337}
  7. 8.
    Simplifying
    x2 + 2x + -4 = -9
    
    Reorder the terms:
    -4 + 2x + x2 = -9
    
    Solving
    -4 + 2x + x2 = -9
    
    Solving for variable 'x'.
    
    Reorder the terms:
    -4 + 9 + 2x + x2 = -9 + 9
    
    Combine like terms: -4 + 9 = 5
    5 + 2x + x2 = -9 + 9
    
    Combine like terms: -9 + 9 = 0
    5 + 2x + x2 = 0
    
    Begin completing the square.
    
    Move the constant term to the right:
    
    Add '-5' to each side of the equation.
    5 + 2x + -5 + x2 = 0 + -5
    
    Reorder the terms:
    5 + -5 + 2x + x2 = 0 + -5
    
    Combine like terms: 5 + -5 = 0
    0 + 2x + x2 = 0 + -5
    2x + x2 = 0 + -5
    
    Combine like terms: 0 + -5 = -5
    2x + x2 = -5
    
    The x term is 2x.  Take half its coefficient (1).
    Square it (1) and add it to both sides.
    
    Add '1' to each side of the equation.
    2x + 1 + x2 = -5 + 1
    
    Reorder the terms:
    1 + 2x + x2 = -5 + 1
    
    Combine like terms: -5 + 1 = -4
    1 + 2x + x2 = -4
    
    Factor a perfect square on the left side:
    (x + 1)(x + 1) = -4
    
    Can't calculate square root of the right side.
    
    The solution to this equation could not be determined.

May 8th, 2015

Thank you so much! I'll look over them and ask if I don't get a part for each one if I'm able to. But I will later because I have to go out for a little bit.

May 8th, 2015

be assured of my services!.....................................

May 8th, 2015

Will I be able to ask questions if I don't get something?

May 8th, 2015

Are you studying on the go? Check out our FREE app and post questions on the fly!
Download on the
App Store
...
May 8th, 2015
...
May 8th, 2015
Dec 4th, 2016
check_circle
Mark as Final Answer
check_circle
Unmark as Final Answer
check_circle
Final Answer

Secure Information

Content will be erased after question is completed.

check_circle
Final Answer