Finding the dimensions

Algebra
Tutor: None Selected Time limit: 1 Day

Length of a rectangular garden is 8ft longer than the width. The garden is surrounded by a sidewalk it is 4ft wide area of 320 square ft. Find the dimersions

May 12th, 2015

Let the garden dimensions be x (the length) and w (the width). Then w = x - 8 and together with the sidewalk it forms a larger rectangle whose length is x + 8 (add twice the width of the sidewalk) and the width is x (add twice the width of the sidewalk to the original width, w + 2*4 = x - 8 + 8). The area of the sidewalk is the difference of the areas of the larger rectangle, (x + 8)x, and the smaller rectangle, x(x - 8). Thus,

(x + 8)x - x(x - 8) = 320;                                                  open the parentheses

x^2 + 8x - x^2 + 8x = 320;                                              simplify

16x = 320;   x = 20

Answer: the length of the garden is 20 ft and the width is 12 ft.

May 12th, 2015

Did you know? You can earn $20 for every friend you invite to Studypool!
Click here to
Refer a Friend
...
May 12th, 2015
...
May 12th, 2015
Dec 3rd, 2016
check_circle
Mark as Final Answer
check_circle
Unmark as Final Answer
check_circle
Final Answer

Secure Information

Content will be erased after question is completed.

check_circle
Final Answer