what is the quadratic function

Algebra
Tutor: None Selected Time limit: 1 Day

(k+1)(k-5)=0

May 13th, 2015

k+1)(k-5)=0 

=>k+1=0;or k-5=0 

=>k=-1;k=5.

hence

Solve Quadratic Equation by Completing The Square

 4.2  Solving  k2-4k-5 = 0 by Completing The Square .
Add   to both side of the equation : 
  k2-4k = 5

Now the clever bit: Take the coefficient of  k , which is  4 , divide by two, giving  2 , and finally square it giving  4 

Add  4  to both sides of the equation :
 On the right hand side we have :
  5 +  4 or,  (5/1)+(4/1) 
 The common denominator of the two fractions is  1  Adding  (5/1)+(4/1)  gives  9/1 
 So adding to both sides we finally get :
  k2-4k+4 = 9

Adding  4  has completed the left hand side into a perfect square :
  k2-4k+4  =
  (k-2) • (k-2) =
 (k-2)2 
Things which are equal to the same thing are also equal to one another. Since
  k2-4k+4 = 9 and
  k2-4k+4 = (k-2)2 
then, according to the law of transitivity,
  (k-2)2 = 9

We'll refer to this Equation as  Eq. #4.2.1  

The Square Root Principle says that When two things are equal, their square roots are equal.

Note that the square root of
  (k-2)2   is
  (k-2)2/2 =
 (k-2)1 =
 k-2


Now, applying the Square Root Principle to  Eq. #4.2.1  we get:
  k-2 = √ 9 

Add   to both sides to obtain:
  k = 2 + √ 9 

Since a square root has two values, one positive and the other negative
  k2 - 4k - 5 = 0
 has two solutions:
 k = 2 + √ 9 
 or
 k = 2 - √ 9 

Solve Quadratic Equation using the Quadratic Formula

 4.3  Solving  k2-4k-5 = 0 by the Quadratic Formula .
According to the Quadratic Formula, k , the solution for  Ak2+Bk+C  = 0  , where  A, B  and  C  are numbers, often called coefficients, is given by :
 
 - B ±  √ B2-4AC
 k =  ————————
 2A  In our case, A =  1
 B =  -4
 C =  -5 Accordingly, B2 - 4AC =
 16 - (-20) =
 36Applying the quadratic formula :

 4 ± √ 36 
 k = —————
 2Can  √ 36 be simplified ?

Yes! The prime factorization of  36  is
  2•2•3•3 
To be able to remove something from under the radical, there have to be   instances of it (because we are taking a square i.e. second root).

 36  = √ 2•2•3•3  =2•3•√ 1  =
 ± 6 • √ 1  =
 ± 6 


So now we are looking at:
  k = ( 4 ± 6) / 2

Two real solutions:

k =(4+√36)/2=2+3= 5.000 

or:

k =(4-√36)/2=2-3= -1.000 

Two solutions were found :

  1.  k = 5
  2.  k = -1

May 13th, 2015

Are you studying on the go? Check out our FREE app and post questions on the fly!
Download on the
App Store
...
May 13th, 2015
...
May 13th, 2015
Dec 9th, 2016
check_circle
Mark as Final Answer
check_circle
Unmark as Final Answer
check_circle
Final Answer

Secure Information

Content will be erased after question is completed.

check_circle
Final Answer