 # Use the limit definition of the derivative to find f'(x) Anonymous
timer Asked: May 15th, 2015
account_balance_wallet \$5

### Question Description

f(x)= 1/ (x-1)

Borys_S
School: Purdue University   By the definition f'(x) = lim[(f(x+dx) - f(x))/dx] as dx --> 0.

Here
f(x+dx) - f(x) = 1/(x+dx-1) - 1/(x-1)  =  [(x-1) - (x+dx-1)]/[(x-1+dx)*(x-1)] = -dx/[(x-1+dx)*(x-1)].

Now / this by dx and obtain -1/[(x-1+dx)*(x-1)]. When dx --> 0, (x-1+dx) --> (x-1), so
-1/[(x-1+dx)*(x-1)] --> -1/[(x-1)^2]   (for any x except x=1, of course).

flag Report DMCA  Review Anonymous
Goes above and beyond expectations ! Brown University

1271 Tutors California Institute of Technology

2131 Tutors Carnegie Mellon University

982 Tutors Columbia University

1256 Tutors Dartmouth University

2113 Tutors Emory University

2279 Tutors Harvard University

599 Tutors Massachusetts Institute of Technology

2319 Tutors New York University

1645 Tutors Notre Dam University

1911 Tutors Oklahoma University

2122 Tutors Pennsylvania State University

932 Tutors Princeton University

1211 Tutors Stanford University

983 Tutors University of California

1282 Tutors Oxford University

123 Tutors Yale University

2325 Tutors