How to multiply radicals

Algebra
Tutor: None Selected Time limit: 1 Day

everything is unclear as to simplify them and multiply them. i have a few questions that involve variables and its very confusing

May 16th, 2015

In the simplest case of multiplying radicals, here's what you do:

Multiply the numbers inside the radical.

sqrt(3) * sqrt(5) = sqrt(15).

If there are numbers outside the radical, multiply those. Those stay outside the radical. Then you multiply the numbers inside the radical. Here's an example:

2sqrt(5) * 5sqrt(7). Multiply the numbers outside: 2*5=10. This number will go in front of the new radical, which is found by multiplying the numbers inside the radical:

10sqrt(5*7)=10sqrt(35).

Those are the only two situations for multiplying radicals :)

Now, SIMPLIFYING radicals is a bit different, but all it requires is pulling out of the radical any number that has a square root (or cube root, or 4th root, whatever you happen to be working with).

So 10sqrt(48) can be simplified. It's really 10sqrt(8*6), which can be simplified further: 10sqrt(2*4*6), and 4 has a square root, so pull it out and multiply it against the outside number.

10*2 (2 being the square root of 4).

20sqrt(2*6). Are we done? Nope! Because 2*6=12, and we can simplify again.

20sqrt(2*4*3).

20*2sqrt(2*3), or

40sqrt(6). Are we done? Yes! Because 6 cannot be stated as the product of any other numbers that have square roots.

Please feel free to contact me for more help :)

May 16th, 2015

Are you studying on the go? Check out our FREE app and post questions on the fly!
Download on the
App Store
...
May 16th, 2015
...
May 16th, 2015
Dec 6th, 2016
check_circle
Mark as Final Answer
check_circle
Unmark as Final Answer
check_circle
Final Answer

Secure Information

Content will be erased after question is completed.

check_circle
Final Answer