find area of a surface

Calculus
Tutor: None Selected Time limit: 1 Day

May 24th, 2015

x=(e^y+e^-y)/2

l∫ 6* π * x * ds 


ds = √( 1 + (dx/dy)^2 ) 

dx/dy = (1/2) [ e^y - e^-y ] = (1/2) [ e^y - (1 / e^y) ] = (1/2) [ (e^2y -1) / e^y) ] 

( dx/dy )^2 = [ (1/2) [ (e^2y -1) / e^y) ] ]^2 = [ (1/4) * [ (e^2y -1)^2 / (e^y)^2 ] 

( dx/dy )^2 = [ (1/4) * [ (e^4y - 2e^2y + 1) / (e^2y) ] 

1 + ( dx/dy )^2 = 1 + [ [ (e^4y - 2e^2y + 1) / (4e^2y) ] ====> LCD 

1 + ( dx/dy )^2 = [ 1*(4e^2y) / (4e^2y) ] + [ [ (e^4y - 2e^2y + 1) / (4e^2y) ] 

1 + ( dx/dy )^2 = [ 4e^2y / 4e^2y ] + [ [ (e^4y - 2e^2y + 1) / (4e^2y) ] 

1 + ( dx/dy )^2 = [ 4e^2y + e^4y - 2e^2y + 1 / (4e^2y) ] 

1 + ( dx/dy )^2 = [ 2e^2y + e^4y + 1 / (4e^2y) ] 

1 + ( dx/dy )^2 = [ e^4y + 2e^2y + 1 / (4e^2y) ] 

1 + ( dx/dy )^2 = [ (e^2y + 1)^2 / (4e^2y) ] 

√( 1 + (dx/dy)^2 ) = √( [ (e^2y + 1)^2 / (4e^2y) ] ) 

√( 1 + (dx/dy)^2 ) = +/- (e^2y + 1) / (2e^y) ===> we are going to take the positive because our limit starts from 0 

√( 1 + (dx/dy)^2 ) = (e^2y + 1) / (2e^y) 

ln(6) 
∫ 2 * π * x * ds 


ln(2) 
∫ 2 * π * [ (e^y+e^-y) / 2 ] * [ (e^2y + 1) / (2e^y) ] dy 


ln(2) 
∫ 2 * π * [ e^y(1+e^-2y) / 2 ] * [ (e^2y + 1) / (2e^y) ] dy 


ln(2) 
∫ 2 * π * [ (1+e^-2y) / 4 ] * [ (e^2y + 1) ] dy 


ln(2) 
∫ π * [ (1+e^-2y) * (e^2y + 1) / 2 ] dy 


ln(2) 
∫ π * [ (e^2y + 1 + 1 + e^-2y) / 2 ] dy 


ln(2) 
∫ π *(1/2) * (e^2y + 2 + e^-2y) dy 


. . .. . . .. . . . . . .. ..... . .. . . .. . .. . . . . .. . . .ln(2) 
π *(1/2) * [ (1/2)e^2y + 2y + (-1/2)e^-2y ] 
. .. . . . .. . . .. . . . . .. . . . . .. . . .. . . .. . . .. 0 

π *(1/2) * [ (1/2) * [e^2(ln(2)) - e^2*0] + 2[ln(2)-0] + (-1/2) [ e^-2(ln(2)) - e^-2(*0) ] ] 

π *(1/2) * [ (1/2) * [e^(ln(2^2)) - 1] + 2ln(2) + (-1/2) [ e^(ln(2^-2)) - 1] ] 

π *(1/2) * [ (1/2) * [ 2^2 - 1] + 2ln(2) + (-1/2) [ 2^-2 - 1] ] 

π *(1/2) * [ (1/2) * [ 3] + 2ln(2) + (-1/2) [ (1/4) - 1] ] 

π *(1/2) * [ (3/2) + 2ln(2) + (-1/2) [ (-3/4)] ] 

π *(1/2) * [ (3/2) + 2ln(2) + (3/8) ] 

π *(1/2) * [ (15/8) + 2ln(6) ] 

π [ (15/16) + ln(6) ] 

May 24th, 2015

Studypool's Notebank makes it easy to buy and sell old notes, study guides, reviews, etc.
Click to visit
The Notebank
...
May 24th, 2015
...
May 24th, 2015
Dec 4th, 2016
check_circle
Mark as Final Answer
check_circle
Unmark as Final Answer
check_circle
Final Answer

Secure Information

Content will be erased after question is completed.

check_circle
Final Answer