Collaborative Filtering Techniques

Anonymous
timer Asked: Jun 29th, 2013
account_balance_wallet $5

Question Description

Good Day!

I am in need of help about collaborative filtering techniques implementation in predicting psychopathy of twitter users. I have two data set, training set and test set. Training set users have already scores in psychopathy, I need any collaborative filtering techniques to predict scores of test set users. Collaborative Filtering such as Item/User-Based CF, Bayesian Belief Nets, Clustering, Latent Semantic, etc.

Please help me. :( I am very confused on how to implement any of these.

Thank you!


Tutor Answer

HMI 421
School: UT Austin

Collaborative filtering (CF) is a technique used by some recommender systems. Collaborative filtering has two senses, a narrow one and a more general one.[1] In general, collaborative filtering is the process of filtering for information or patterns using techniques involving collaboration among multiple agents, viewpoints, data sources, etc.[1] Applications of collaborative filtering typically involve very large data sets. Collaborative filtering methods have been applied to many different kinds of data including: sensing and monitoring data, such as in mineral exploration, environmental sensing over large areas or multiple sensors; financial data, such as financial service institutions that integrate many financial sources; or in electronic commerce and web applications where the focus is on user data, etc. The remainder of this discussion focuses on collaborative filtering for user data, although some of the methods and approaches may apply to the other major applications as well.
In the newer, narrower sense, collaborative filtering is a method of making automatic predictions (filtering) about the interests of a user by collecting preferences or taste information from many users (collaborating). The underlying assumption of the collaborative filtering approach is that if a person A has the same opinion as a person B on an issue, A is more likely to have B's opinion on a different issue x than to have the opinion on x of a person chosen randomly. For example, a collaborative filtering recommendation system for television tastes could make predictions about which television show a user should like given a partial list of that user's tastes (likes or dislikes).[2] Note that these predictions are specific to the user, but use information gleaned from many users. This differs from the simpler approach of giving an average (non-specific) score for each item of interest, for example based on its number of votes.

flag Report DMCA
Review

Anonymous
Thanks, good work

Similar Questions
Hot Questions
Related Tags
Study Guides

Brown University





1271 Tutors

California Institute of Technology




2131 Tutors

Carnegie Mellon University




982 Tutors

Columbia University





1256 Tutors

Dartmouth University





2113 Tutors

Emory University





2279 Tutors

Harvard University





599 Tutors

Massachusetts Institute of Technology



2319 Tutors

New York University





1645 Tutors

Notre Dam University





1911 Tutors

Oklahoma University





2122 Tutors

Pennsylvania State University





932 Tutors

Princeton University





1211 Tutors

Stanford University





983 Tutors

University of California





1282 Tutors

Oxford University





123 Tutors

Yale University





2325 Tutors