22 Multiple choice questions

User Generated

10fehyrf

Mathematics

Description

1.

Use your graphing calculator to evaluate limit as x goes to infinity of the quantity 1 plus x all raised to the power of 5 divided by x . (2 points)

2.

Use your calculator to select the best answer below:

limit as x goes to infinity of the quotient of 10 raised to the x power and the quantity negative e raised to the x power (2 points)

3.

limit as x approaches a of the quotient of the quantity a minus x and the quantity the square root of x minus the square root of a equals (2 points)

4.

Find the limit as x goes to 0 of the quotient of the quantity x plus 1 minus the square of cosine x and 3 times the sine of x . (2 points)

5.

If limit as x approaches zero of f of x equals three and limit as x approaches zero of g of x equals one , then find limit as x approaches zero of the quantity f of x plus g of x squared . (2 points)

6.

Evaluate limit as x approaches 0 of the quotient of the absolute value of x and x . (2 points)

7.

Evaluate limit as x goes to 3 of the quotient of the quantity 1 divided by x minus 1 third and the quantity x minus 3 . (2 points)

8.

Evaluate limit as x goes to 0 of the quotient of the sine of 5 times x and 6x . (2 points)

9.

If f is a continuous function with odd symmetry and limit as x approaches negative infinity of f of x equals negative 5 , which of the following statements must be true? (2 points)

I.the limit as x goes to infinity of f of x equals 5

II.There are no vertical asymptotes.

III.The lines y = 5 and y = -5 are horizontal asymptotes.

10.

What are the horizontal asymptotes of the function f of x equals the quotient of 2 times the square root of the quantity x squared plus 4 and x ? (2 points)

11.

Which one or ones of the following statements is/are true? (2 points)

I.If the line y = 2 is a horizontal asymptote of y = f(x), then f is not defined at y = 2.

II.If f(5) > 0 and f(6) < 0, then there exists a number c between 5 and 6 such that f(c) = 0.

III.If f is continuous at 2 and f(2)=8 and f(4)=3, then the limit as x approaches 2 of f of the quantity 4 times x squared minus 14 equals 8 .

12.

Find limit as x goes to infinity of the quotient of 7 times x cubed minus 3 times x squared plus 3 times x and negative 8 times x squared plus 4 times x plus 3 (2 points)

13.

Evaluate limit as x goes to 2 from the right of the quotient of x and the quantity the square root of the quantity x squared plus 4 . (2 points)

14.

Which of the following are the equations of all horizontal and vertical asymptotes for the graph of f of x equals x divided by the quantity x times the quantity x squared minus 16 ? (2 points)

15.

Evaluate limit as x approaches 1 at f of x for f of x equals the quantity 5 times x minus 10 for x less than 1, equals 1 for x equals 1 and equals negative 3 times x minus 2 for x greater than 1 . (2 points)

16.

Where is f of x equals the quotient of x plus 2 and x squared minus 2 times x minus 8 discontinuous? (2 points)

17.

Which of the following are continuous for all real values of x?(2 points)

I.f of x equals the quotient of the quantity x squared plus 5 and the quantity x squared plus 1

II.g of x equals the quotient of 3 and x squared

III.h of x equals the absolute value x

18.

Which of the following must be true for the graph of the function f of x equals the quotient of the quantity x squared minus 9 and the quantity 3 times x minus 9 ?(2 points)

There is:

I.a vertical asymptote at x = 3

II.a removable discontinuity at x = 3

III.an infinite discontinuity at x = 3

19.

What is the average rate of change of y with respect to x over the interval [1, 5] for the function y = 4x + 2? (2 points)

20.

What is the instantaneous slope of y = negative two over x at x = 3? (2 points)

21.

The height, s, of a ball thrown straight down with initial speed 64 ft/sec from a cliff 80 feet high is s(t) = -16t2 - 64t + 80, where t is the time elapsed that the ball is in the air. What is the instantaneous velocity of the ball when it hits the ground? (2 points)

22.

The surface area of a right circular cylinder of height 5 feet and radius r feet is given by S(r)=2πrh+2πr2. Find the instantaneous rate of change of the surface area with respect to the radius, r, when r = 6. (2 points)

User generated content is uploaded by users for the purposes of learning and should be used following Studypool's honor code & terms of service.

Explanation & Answer

Hi, please find all the solutions attached. Please, let me know if you have any questions. Thanks!
check_circle Nyctutor marked this question as complete.

1
Use your graphing calculator to evaluate

. (2 points)

Answer: 1
Use your calculator to select the best answer below:
(2 points)
Answer: DOES NOT EXIST
3.
(2 points)
Answer:

4.
Find

. (2 points)

Answer:

5.
If

and

, then find

Answer: 16
6.
Evaluate

. (2 points)

Answer: Does not Exist
7.
Evaluate
Answer:

. (2 points)

. (2 points)

8.
Evaluate...


Anonymous
Awesome! Made my life easier.

Studypool
4.7
Indeed
4.5
Sitejabber
4.4

Related Tags