Access Millions of academic & study documents

Trigonometry Week 14 Test Grade Report

Content type
User Generated
Subject
Trigonometry
Type
Exam Practice
Showing Page:
1/15
Trigonometry Week 14 Test - Grade Report
Score:
79% (79.3333 of 100 pts)
Submitted:
Aug 8 at 12:28pm
Question: 1
Grade: 0.33333334 /
4.0
Find the cube roots of −4+43–√i−4+43i.
22(cos4π9+isin4π9)cos4π9+isin4π9, 22(cos2π9+isin2π9)cos2π9+isin2π9,
22(cos8π9+isin8π9)cos8π9+isin8π9 (33%)
Solution
Write −4+43–√i−4+43i in polar form
−4+43–√i−4+43i=88(cos2π3+isin2π3)cos2π3+isin2π3
To find the cube roots, use the formula
rn(cos(θ+2πkn)+isin(θ+2πkn))rncosθ+2πkn+isinθ+2πknwhere k=0,1,2,3,...,n−1.k=0,1,
2,3,...,n−1.
z=z=22⎛⎝⎜cos⎛⎝⎜2π3+2πk3⎞⎠⎟+isin⎛⎝⎜2π3+2πk3⎞⎠⎟⎞⎠⎟cos2π3+2πk3+isin2
π3+2πk3where k=0,1,2.k=0,1,2.
When k=0k=0
22⎛⎝⎜cos⎛⎝⎜2π3+2π(0)3⎞⎠⎟+isin⎛⎝⎜2π3+2π(0)3⎞⎠⎟⎞⎠⎟cos2π3+2π03+isin2
π3+2π03=22(cos2π9+isin2π9)cos2π9+isin2π9
When k=1k=1
22⎛⎝⎜cos⎛⎝⎜2π3+2π(1)3⎞⎠⎟+isin⎛⎝⎜2π3+2π(1)3⎞⎠⎟⎞⎠⎟cos2π3+2π13+isin2
π3+2π13=22(cos8π9+isin8π9)cos8π9+isin8π9
When k=2k=2
22⎛⎝⎜cos⎛⎝⎜2π3+2π(2)3⎞⎠⎟+isin⎛⎝⎜2π3+2π(2)3⎞⎠⎟⎞⎠⎟cos2π3+2π23+isin2
π3+2π23=22(cos14π9+isin14π9)cos14π9+isin14π9
Therefore, the cube roots of −4+43
i−4+43i are 22(cos2π9+isin2π9)cos2π9+isin2π9, 22(cos8π9+isin8π9)cos8π9+isin8π9
, 22(cos14π9+isin14π9)cos14π9+isin14π9.
Question: 2
Grade: 1.0 / 4.0
Solve.
u4+7=32u4+7=32
±5–√,±i5–√±5,±i5 (100%)
Solution
Set the equation equal to zero and solve by factoring.
u4+7=32u4+7=32

Sign up to view the full document!

lock_open Sign Up
Showing Page:
2/15
u4=25u4=25
u4−25=0u4−25=0
(u2+5)(u2−5)=0u2+5u2−5=0
u2+5=0u2+5=0 and u2−5=0u2−5=0
u2=−5u2=−5and u2=5u2=5
ui5–√u=±i5 and u=±5–√u=±5
Therefore, the four solutions are ±5√,±i5–√±5,±i5.
Question: 3
Grade: 1.0 / 4.0
Find the quotient z1z2z1z2.
z1=42(cos180°+isin180°)z1=42cos180°+isin180°and z2=6(cos90°+isin90°)z2=6cos90°
+isin90°
z1z2=7(cos90°+isin90°)z1z2=7cos90°+isin90° (100%)
Solution
=
r1r2(cos(θ1−θ2)+isin(θ1−θ2))r1r2cosθ1−θ2+isinθ1−θ2
=
426(cos(180°−90°)+isin(180°−90°))426cos180°−90°+isin180°−90°
=
7(cos90°+isin90°)7cos90°+isin90°
Question:
4
Grade: 1.0 / 4.0
Solve.
t4−6,561=0t4−6,561=0
−9−9, 99, 9i9i, −9i−9i (100%)
Solution
t4−6,561t4−6,561
=
0
t4t4
=
6,5616,561
Find r and θ.
In the complex plane, 6,561 is the point (6,561, 0) on the positive real axis, so r = 6,561
and θ = 2π;.
Use
rn(cos(θ+2πkn)+isin(θ+2πkn))rncosθ+2πkn+isinθ+2πknwhere k=0,1,2,3,...,n−1.k=0,1,
2,3,...,n−1.
z=6,561−−−−√4(cos(2π+2πk4)+isin(2π+2πk4))z=6,5614cos2π+2πk4+isin2π+2πk4wher
e k=0,1,2,3.k=0,1,2,3.
When k=0:k=0:

Sign up to view the full document!

lock_open Sign Up
Showing Page:
3/15

Sign up to view the full document!

lock_open Sign Up
End of Preview - Want to read all 15 pages?
Access Now
Unformatted Attachment Preview
Trigonometry Week 14 Test - Grade Report Score: 79% (79.3333 of 100 pts) Submitted: Aug 8 at 12:28pm Question: 1 Grade: 0.33333334 / 4.0 Find the cube roots of −4+43–√i−4+43i. 22(cos4π9+isin4π9)cos4π9+isin4π9, 22(cos2π9+isin2π9)cos2π9+isin2π9, 22(cos8π9+isin8π9)cos8π9+isin8π9 (33%) Solution Write −4+43–√i−4+43i in polar form −4+43–√i−4+43i=88(cos2π3+isin2π3)cos2π3+isin2π3 To find the cube roots, use the formula r√n(cos(θ+2πkn)+isin(θ+2πkn))rncosθ+2πkn+isinθ+2πknwhere k=0,1,2,3,...,n−1.k=0,1, 2,3,...,n−1. z=z=22⎛⎝⎜cos⎛⎝⎜2π3+2πk3⎞⎠⎟+isin⎛⎝⎜2π3+2πk3⎞⎠⎟⎞⎠⎟cos2π3+2πk3+isin2 π3+2πk3where k=0,1,2.k=0,1,2. When k=0k=0 22⎛⎝⎜cos⎛⎝⎜2π3+2π(0)3⎞⎠⎟+isin⎛⎝⎜2π3+2π(0)3⎞⎠⎟⎞⎠⎟cos2π3+2π03+isin2 π3+2π03=22(cos2π9+isin2π9)cos2π9+isin2π9 When k=1k=1 22⎛⎝⎜cos⎛⎝⎜2π3+2π(1)3⎞⎠⎟+isin⎛⎝⎜2π3+2π(1)3⎞⎠⎟⎞⎠⎟cos2π3+2π13+isin2 π3+2π13=22(cos8π9+isin8π9)cos8π9+isin8π9 When k=2k=2 22⎛⎝⎜cos⎛⎝⎜2π3+2π(2)3⎞⎠⎟+isin⎛⎝⎜2π3+2π(2)3⎞⎠⎟⎞⎠⎟cos2π3+2π23+isin2 π3+2π23=22(cos14π9+isin14π9)cos14π9+isin14π9 Therefore, the cube roots of −4+43– √i−4+43i are 22(cos2π9+isin2π9)cos2π9+isin2π9, 22(cos8π9+isin8π9)cos8π9+isin8π9 , 22(cos14π9+isin14π9)cos14π9+isin14π9. Question: 2 Grade: 1.0 / 4.0 Solve. u4+7=32u4+7=32 ±5–√,±i5–√±5,±i5 (100%) Solution Set the ...
Purchase document to see full attachment
User generated content is uploaded by users for the purposes of learning and should be used following Studypool's honor code & terms of service.
Studypool
4.7
Indeed
4.5
Sitejabber
4.4