Access over 20 million homework & study documents

search

Calculus : Rolle's Theorem

Subject

Calculus

Type

Study Guide

Rating

Showing Page:
1/2
 

(1) 
(2)  
(3) !"#!"
$ ϵ!"!"#%
&
!$"'

(# #)(#(
*+(#!$"
,)-
!"#%.$ϵ  !"
/ 
0+(12!"!"
3!"#!"(1
(# 4 ϵ (# !"'
5!("26!"!"
11
'7!"
 
!8"9!"
!8":!"9%
!"

Sign up to view the full document!

lock_open Sign Up
!8":!";9%
!8":!";9%
 %
!"9%<<<<<'*
=
!>"9!"
!>":!"9%
!>":!";>?%
!>":!";>?%
 %
!"?%<<<<<0
-*0,-
!"#%ϵ!"
/ '

Sign up to view the full document!

lock_open Sign Up

Unformatted Attachment Preview

"Rolle's Theorom"Statement: Let a function f be(1) Continuous on the closed interval [ a, b ](2) Derivable in the open interval [ a, b ](3) f(a) = f(b)Then there exists at least one point c ? ( a, b ) such that f'(c) = 0Proof: Since f(x) is continuous on [a, b]. So it is bounded on [a, b], and attain its boundsLet M = supremum and m = infimum of [a, b] then M = m or M ? mCase 1: If M = m then f(x) is constant in the interval [a, b],as shown in figure f'(c) = 0 ? x ? [ a, b ] f(b)Hence, theorem is proved in this caseabCase 2: If M ? m, then at least one of them is diffe ...
Purchase document to see full attachment
User generated content is uploaded by users for the purposes of learning and should be used following Studypool's honor code & terms of service.

Anonymous
Nice! Really impressed with the quality.

Studypool
4.7
Trustpilot
4.5
Sitejabber
4.4