Unformatted Attachment Preview
Running head: ASSIGNMENT
1
Linear Algebra
Student Name
Institution
ASSIGNMENT
2
Question 1
Question 1(a)
Let B= {𝑥 2 , x,1} et S = {𝑥 2 +x,2x-1,x+1} be two basis of 𝑃2
Let 𝑖𝐵 and 𝑖𝑠 be the coordinate map induced on 𝑃2
B= {𝑥 2 , x,1}
T: 𝑃2 ⟶ 𝑃2
S= S = {𝑥 2 +x,2x-1,x+1}
B and S are two basis of 𝑃2
1 2
[𝑇]𝐵,𝑆 = [−1 3
2 2
0
5 ] = {x𝜖 𝑅 3 | 𝑇𝑥 = 0}
−2
𝑥1
1 2 0
0
[−1 3 5 ] [𝑥2 ] = [0]
2 2 −2 𝑥3
0
𝑥1 - 2𝑥2 = 0
𝑥1 = 2𝑥2 ……………………. Equation (1)
-𝑥1 +3𝑥2 +5𝑥3 = 0 ……………………… Equation (2)
2𝑥1 + 2𝑥2 -2𝑥3 =0
……………………….. Equation (3)
From Equation (1) and Equation (2)
-2𝑥2 +3𝑥2 +5𝑥3 = 0
𝑥2 +5𝑥3 = 0
From Equation (1) and Equation (3)
4𝑥2 +2𝑥2 -2𝑥3 = 0
6𝑥2 -2𝑥3 = 0
3𝑥2 -𝑥3 = 0
𝑥
Therefore, 𝑥3 = 3𝑥2 = 3( 22 )
ASSIGNMENT
𝑥3 =
𝑥2 =
3
3𝑥2
2
𝑥1
2
1
3
⟶ 𝑥1 (1, 2 , 2 )
1
3
Null ([𝑇]𝐵,𝜃 ) = {c(1, 2 , 2 ) ; c𝜖ℝ }
1
1
Null[𝑇𝐵𝑆 ] = Span{(2 )}
3
2
To find 𝐼𝐵 (𝑇) ,
𝑥1
𝑥1 + 2𝑥2
1 2 0
𝑥
−𝑥
[−1 3 5 ] [ 2 ] = [ 1 + 3𝑥2 + 5𝑥3 ]
2 2 −2 3∗3 𝑥3 3∗1 2𝑥1 + 2𝑥2 − 2𝑥3
1
2
0
= 𝑥1 [−1] + 𝑥2 [3] + 𝑥3 [ 5 ]
2
2
−2
Thus
0
1
2
[ 5 ] = −2 [−1] + 1 [3]
−2
2
2
1
2
1
2
= 𝑥1 [−1] + 𝑥2 [3] - 2𝑥3 [−1] + 𝑥3 [3]
2
2
2
2
1
2
= (𝑥1 -2𝑥3 ) [−1] + (𝑥2 +𝑥3 ) [3]
2
2
1
1
𝐼𝐵 (([𝑇])𝐵,𝑠 ) span {(−1 ) , (3 )}
2
2
Therefore,
1
2
0
(𝑇𝐵𝑆 )= Span{(−1 ) , (3 ) , (5 )}
2
2
2
ASSIGNMENT
4
Question 1(b)
T:𝑀3∗3 ⟶ P2
𝑎
𝑑
T(
𝑔
𝑏
𝑒
ℎ
𝑐
𝑓 ) = (a-b)𝑥 2 +c(x-1)+d
𝑖
1 0
T(0 0
0 0
0
0) = 𝑥 2
0
0 1
T(0 0
0 0
0
0) = (-1) 𝑥 2
0
0 0
T(0 0
1 0
0
0) = 1(X-1)
0
0 0
T(0 0
0 0
0
0) = 1
1
Now,
𝑎
𝑑
T(
𝑔
𝑏
𝑒
ℎ
𝑐
𝑓 ) = 0, a=1, e=1,i=1 and b,c,d,f,g,h = 0
1
1 0
So the basis of Ker(T) = (0 1
0 0
0
0)
1
And the basis of Image of T (Im(T) )
= {1,X,𝑋 2 }
Question 2
We have shall check the following inner product for <,∙,> ; let u,v,w 𝜖 v and 𝜆 is a scalar then;
<𝑇(𝑢),𝑇(𝑣)>
a) 1 =<𝑇(𝑣),𝑇(𝑤)>
= ̅̅̅̅̅̅̅̅̅̅̅
< 𝑣, 𝑢 > [∵ <,> is an inner product on V]
b) 1 = < 𝑇(𝑢 + 𝑣), 𝑇(𝑤) >
ASSIGNMENT
5
= < 𝑇(𝑤) + 𝑇(𝑣), 𝑇(𝑤) >
= < 𝑇(𝑤), 𝑇(𝑣) > +< 𝑇(𝑣), 𝑇(𝑤) >
=1 =+ 1
c) <𝜆u+v>1 = < 𝑇(𝜆𝑢), 𝑇(𝑣) >
= < 𝜆𝑇(𝑢), 𝑇(𝑣) > [∵ T is linear]
= < 𝑇(𝑤), 𝑇(𝑣) > +< 𝑇(𝑣), 𝑇(𝑤) >
=1 =+ 1
d)
1 = = 0 iff T(u) = 𝜃
where 𝜃is the null element of u= 𝜃 [∵ T is injective ]
so, ≥ 0 for all v and 1 for all u𝜖 V and 1 = 0 iff u=0
hence <,>1 satisfies all axioms of inner product and it is a inner product on V
If T is positive definite matrix, then T will give n inner product
1
= ∫0 (𝑓(𝑡) − 𝑓 ′ (𝑡))(𝑔(𝑡) − 𝑔′ (𝑡))dt
1
= ∫0 (𝑓(𝑡) − 𝑓 ′ (𝑡))2 dt
If = 0 ⟹ 𝑓(𝑡) − 𝑓 ′ (𝑡) = 0
⟹ 𝑓(𝑡) = 𝑓 ′ (𝑡)
⟹ 𝑓(𝑡) = 𝑒 𝑡 ∀ t and f 𝜖 𝑝𝑛
But 𝑒 𝑡 ∉ 𝑝𝑛 thus not an inner product since = 0 ≇ f = 0 hence false
Question 3
Question 3(a)
∞
(f,g) = ∫0 𝑒 −𝑡 f(t)g(t) dt
P(x) = 𝑥 3
ASSIGNMENT
6
The basis of 𝑃2 is {1,x,𝑥 2 }
We need to determine the orthogonal basis of 𝑃2
Let
𝑣1 = 1 ………………….. Equation 1
𝑣2 = x ………………….. Equation 2
𝑣3 = 𝑥 3 ………………….. Equation 3
Therefore by Gram Schmidt orthogonalization process, we get
𝑤1 =1 …………………………………… Equation 4
𝑣1 = 1
……………………………….. Equation 5
(𝑣 ,𝑤 )
𝑤2 = 𝑣2 - (𝑤2 ,𝑤1 )…………………………..Equation 6
1
1
From equation 1 and 2,
(𝑥,1)
𝑤2 = 𝑥- (1,1).1
𝑤2 = 𝑥- 1
∞
=1
0
∞
(x,1) = ∫0 𝑒 −𝑡 .t.1 dt = [−𝑡𝑒 −𝑡 − 𝑒 −𝑡 ]
∞
∞
(1,1) = ∫0 𝑒 −𝑡 .1 dt = [−𝑒 −𝑡 ] = 1
0
(𝑣 ,𝑣 )
(𝑣 ,𝑤 )
𝑤3 = 𝑣3 - (𝑤3,𝑤1 )* 𝑤1 - (𝑤3 ,𝑤2 )
1
= 𝑥2 –
(𝑥 2 ,1)
(1,1)
1
-
2
(𝑥 2 ,(𝑥−1)
2
(x-1)
(𝑥−1,𝑥−1)
Therefore,
∞
(𝑥 2 , 1) = ∫0 𝑒 −𝑡 .𝑡 2 dt= 0+2 = 2
∞
(𝑥 2 , 𝑥 − 1) = ∫0 𝑒 −𝑡 .𝑡 2 (𝑡 − 1) dt
∞
∞
= ∫0 𝑡 3 𝑒 −𝑡 dt - ∫0 𝑡 2 𝑒 −𝑡 dt
ASSIGNMENT
7
= 0+(3*2)-2
=4
∞
(x-1,x-1) = ∫0 𝑒 −𝑡 .(𝑡 − 1) (𝑡 − 1) dt
∞
= ∫0 𝑒 −𝑡 .(𝑡 2 − 2𝑡 + 1) dt
∞
0
= 2-2+[𝑒 −𝑡 ]
=2-2+1
=1
Therefore,
2 4
𝑤3 = 𝑥 2 - 1- 1 (x-1)
= 𝑥 2 - 2 − 4(𝑥 − 1)
= 𝑥 2 -2-4x+4
= 𝑥 2 4x+2
Thus, orthogonal basis of 𝑃2 IS {1,x-1, 𝑥 2 4x+2}
Orthogonal projection of P(x) = 𝑥 3 onto 𝑃2 = 𝑃𝑟𝑜𝑗𝑤1 P(x) 𝑃𝑟𝑜𝑗𝑤2 P(x)+ 𝑃𝑟𝑜𝑗𝑤3 P(x)
=
(𝑃(𝑥),𝑤1 )
(𝑤1 ,𝑤1 )
𝑤1 +
(𝑃(𝑥),𝑤2 )
(𝑤2 ,𝑤2 )
(𝑃(𝑥),𝑤3 )
𝑤2+
(𝑤3 ,𝑤3 )
𝑤3
(𝑃(𝑥), 𝑤1 ) = (𝑥 3 , 1)
∞
= ∫0 𝑒 −𝑡 .𝑡 3 dt
= 0+(3*2)
=6
(𝑃(𝑥), 𝑤2 ) = (𝑥 3 , x-1)
∞
= ∫0 𝑒 −𝑡 .𝑡 3 (𝑡 − 1) dt
∞
∞
= ∫0 𝑒 −𝑡 𝑡 4 dt - ∫0 𝑒 −𝑡 𝑡 3 dt
ASSIGNMENT
8
= 0+(24-6)
= 18
(𝑃(𝑥), 𝑤3 ) = (𝑥 3 , 𝑥 2 − 4𝑥+2)
∞
= ∫0 𝑒 −𝑡 .𝑡 3 (𝑡 2 − 4𝑡 + 2) dt
= (0 + 5 ∗ 18)-(4*18+12)
= 0+(24-6)
= 18+12
= 30
∞
(𝑤3 , 𝑤3 ) = ∫0 𝑒 −𝑡 .(𝑡 2 − 4𝑡 + 2)( 𝑡 2 − 4𝑡 + 2)dt
∞
= ∫0 𝑒 −𝑡 .(𝑡 4 − 4𝑡 3 + 2𝑡 2 − 4𝑡 3 + +16𝑡 2 -8t +2𝑡 2 -8t +4t) dt
∞
= ∫0 𝑒 −𝑡 .(𝑡 4 − 4𝑡 3 + 2𝑡 2 − 4𝑡 3 + 16𝑡 2 -8t +2𝑡 2 -8t +4t) dt
∞
= ∫0 𝑒 −𝑡 .(𝑡 4 − 8𝑡 3 + 20𝑡 2 − 16𝑡 + 4) dt
= 24-8*6+20*2-16*1+4
=4
Therefore, orthogonal projection of P(x) = 𝑥 3 onto 𝑃2 is
30
= 6*1+18𝑤2 + 4 𝑤3
= 6+18(x-1)+
15
2
(𝑥 2 -4x+2)
15
= 6+18x-18+ 2 𝑥 2 -30x+15
=
15
2
𝑥 2 -12x+3
Question 3(b)
∈ = {f*(𝑃2 |f(0) = 0}
Let a+bx+(𝑥 2 +a𝑥 3 ∈ E)
ASSIGNMENT
9
⟹ a+b(0) +c(0)2 +d(0)3 -E
a+b(0) +c(0)2 +d(0)3 -E = 0
a=0
Therefore, the elements of the form +(𝑥 2 +a𝑥 3 ∈ E) and it is spanned by x, 𝑥 2 , 𝑥 3 . Therefore
basis of E is (x, 𝑥 2 , 𝑥 3 ) .
Question 4
Question 4
In order to prove 𝑢0 is unique in T(v) = < 𝑢0 , v> ∀ r 𝜖 v
Let 𝑢0 is not unique ⟹ T(v) = < 𝑢0 , v>
T(v) = < 𝑢1 , v>
⟹ < 𝑢0 , v> = < 𝑢1 , v>
⟹ < 𝑢0 -𝑢1 , 0> = 0
So by property of inner product ⟹ 𝑢0 -𝑢1 (𝑢0 =𝑢1 ) hence 𝑢0 is unique
Now to find q 𝜖 𝑝2 ∀ P 𝜖 𝑃2
1
P(0) = ∫−1 𝑞(𝑡)p(t) dt
Let q(t) = A+Bt+C𝑡 2
1
P(0) = ∫−1(A + Bt + C𝑡 2 )p(t) dt
1
Let P(t) = 1 ⟹ 𝑃2 (𝑥) ⟹ 1 = ∫−1(A + Bt + C𝑡 2 ) dt
2𝐶
1= 2A+ 3 ……………………………………………. Equation 1
1
P(t) = t ⟹ 0 = ∫−1(At + Bt 2 + C𝑡 3 )dt
2𝐵
P(0) = 0 ⟹ 0 = 0+ 3 +0 ⟹ B=0 ……………………. Equation 2
Let P(t) = 𝑡 2 ⟹ 𝑃2
ASSIGNMENT
10
P(0) = 0
1
0 = ∫−1(At 2 + Bt 3 + C𝑡 4 )dt
t3
′
t5
′
0 = 2A( 3 ) +0 +2C( 5 )
0=
2𝐴 2𝐶
3
+ 3 = 0 ⟹ 5A = -3C
………………. Equation 3
From equation 1,
2𝐶
1=2𝐴+ 3
−8
⟹ 1= 15 𝐶
C=
−15
8
9
A= 8
Therefore,
9
q(t) = + 0.t8
9
q(t) = 8 -
15 2
𝑡
8
15 2
𝑡
8
Question 5
Question 5(a)
3 2
Given, A= [2 3
2 2
2
2]
3
3−𝑥
The characteristic equation of A is, | 2
2
2
3−𝑥
2
2
2 |
3 − 𝑥 𝑥=0
i.e (3-x)*[(3 − 𝑥)2 − 4] – 2*[6-2x-4] +2*[4-+2x] = 0
(3-x)*[5 − 6𝑥 + 𝑥 2 ] + 8x -8 =0
ASSIGNMENT
11
𝑥 3 - 9𝑥 2 +15x -7 =0
(𝑥 − 1)2 (X-7) = 0
X= 1, 1, 7
Thus the Eigenvalues of A are 1, 1, and 7 then the Eigenvectors are given as:
−1
[1]
𝑐 0
−1
[0]
+𝑑 1
Where c, d ≠ 0
The corresponding Eigenvector to the above Eigenvalue 7 is :
1
[1]
𝑐1
−1 −1 1
Let P = [ 1
0 1] and a non-singular matrix
0
1 1
Then,
3 2
AP = [2 3
2 2
2 −1 −1 1
−1 −1
2] [ 1
0 1] = [ 1
0
3 0
1 1
0
1
−1 −1 1 1 0
PD = [ 1
0 1 ] [0 1
0
1 1 0 0
0
−1 −1
0] = [ 1
0
1
0
1
7
7]
7
7
7]
7
Thus, AP = PD
i.e A= PDPT where P-1= PT
Question 5(b)
The maximum value of G(u)
𝑢1
3(𝑢1 2 +𝑢2 2 +𝑢3 2 )+3(𝑢1 𝑢2 +𝑢2 𝑢3 +𝑢3 𝑢1 )
G[𝑢2 ] =
𝑢1 2 +𝑢2 2 +𝑢3 2
𝑢3
Then the maximum value of G(u) is at (-1,0,1), (0,-1,1), (-1,1,0),(1,0,-1),(1,-1,0),and (0,1,-1)
ASSIGNMENT
12
Name:
Description:
...