Browse over 20 million
homework answers & study documents

Statistics

Problems on Normal Distribution,

Type

Homework

Rating

Showing Page:
1/6
Q1

 !
"
Ans
#$%&#%!'()*
#$&#!('(+)*
,!-.(/)01
%2-(/)*11
,().(3()1*
,!-.*/)0"
%2-*/)411
,*).*3*)1("
5,65,,6)-.(7.*/3-(7*/
,6)1(8
96:5,)(&,6)14
#-;/)-,(&,*/3<-,696-(3(7(3*//
;)-1*&1("/3=--1(8>14-(3*117(3411//
;)(0"
?;?)(0"
@:
#:?;?A211"(B
C?;?)(0"D?;?)(B
EFG
:?;?H?;?
There Is No Signicance between them
)(&-@A3(11/
;3*);&
@$)@$
E-I/)*8
J-/)"01
)I3)1""
@$)K1""L;3*-=-1"">10"/3"01/M
)K1""&*">=-1111"/N1""7*">=-1111"/M
)K10"N1B1"M
ON 
#
,E-/)8
P#.-E/)"B
G-G/)*(
%-/)*1
#-/)I&3-3=-//
)"B&83-*(3=-*1//
)&*(0
??)*(0
C??)*(0
EFG
,&:'A#&'-,H&*(0/)11140
,

H,NQ
8
#$&#!('(+)*
#
P#.-E/)48111
G-(/)0111
%-(/)*4
P#O-E/)40111
G-*/)"111
%-*/)*B
#-/)-.&O/3=-(6*3(/7-*6*3*/
)48111&401113=--(B1111113*4/7-*"1111113*B//
)*4410
??)*4410
@:
#:??-(7*&*/08*1(1B
C??)*4410D??)*1(1B
EFG
:??R??Q

Sign up to view the full document!

lock_open Sign Up
,&:'##-/&'-,+)*4410/)110
 !
#%!1')*0
#!('R*0
#
,E-/)*0
P#.-E/)*"
G-G/)*
%-/)(B
#-/)I&3-3=-//
)*"&*03-*3=-(B//
)*
??)*
@:
#:??&()("(8"
C??)*D??)(8"
EFG
:??R??Q
,&:'Q#&'-,R*/)114(8
!!*0!
#%!1'H4
#!('R4
#
,E-/)4
P#.-E/)4(
G-G/)1"
%-/)(11
#-/)I&3-3=-//
)4(&43-1"3=-(11//
)*
??)*
@:
#:??&()(BB
C??)*D??)(BB
EFG
:??R??Q
#F4
AS!,KM
AS!F,KM
#!F=!%O4*#!
%2%T4*(&,KMC,KM)*8#(&,KM)84
!4*=!-(&,KM/4*
#'
(&,KM)-(&,KM/64*
84)-(&,KM/64*
11*()(&,KM
,KM)1118)18
('!
#%!1'H4"
#!('R4"
*'@:
#:??&()"*4
4'#
,E-/)4"
P#.-E/)4B
G-G/)1B
%-/)B1
#-/)I&3-3=-//
)4B&4"3-1B3=-B1//
)(*(
??)(*(
C??)(*(D??)*4
0'EFG
:??H??
"'4"
%G
E-/)1

Sign up to view the full document!

lock_open Sign Up

Sign up to view the full document!

lock_open Sign Up

Unformatted Attachment Preview

Q1A researcher at a major clinic wishes to estimate the proportion of the adult population of the United States that has sleep deprivation. How large a sample is needed in order to be 98% confident that the sample proportion will not differ from the true proportion by more than 5%.Ans There Is No Significance between them - Under The Null Hypothesis Ho: p1 = p2 There Is Significance between them - Under The Alternate Hypothesis H1: p1 != p2Probability Success( X1 )=40Number of Observed (n1)=200P1= X1/n1=0.2Probability Success(X2)=45No. of Observed (n2)=300P2= X2/n2=0.15Finding a P^ value For Proportion P^=(X1 + X2 ) / (n1+n2) P^=0.17Q^ Value For Proportion= 1-P^=0.83we use Test Statistic (Z) = (P1-P2)/?(P^Q^(1/n1+1/n2))Z cal=(0.2-0.15)/Sqrt((0.17*0.83(1/200+1/300))Z cal=1.458| Z cal | =1.458Critical ValueThe Value of |Z tab| at LOS 0.05% is 1.96We got |Z cal| =1.458 & | Z tab | =1.96Make DecisionHence Value of |Z cal | < | Z tab | and Here we Accept HoThere Is No Significance between them a = 1 - (Confidence Level/100) Za/2 = Z-table value CI = Confidence Interval Mean(x)=297Sample Size(n)=540Sample proportion = x/n =0.55Confidence Interval = [ 0.55 Z a/2 ( Sqrt ( 0.55*0.45) /540) ] = [ 0.55 - 2.58* Sqrt(0.0005) , 0.55 + 2.58* Sqrt(0.0005) ] = [ 0.495,0.605]Yes, it is affectiveTest StatisticPopulation Mean(U)=7Given That X(Mean)=5.6Standard Deviation(S.D)=2.1Number (n)=20we use Test Statistic (t) = x-U/(s.d/Sq ...
Purchase document to see full attachment

Anonymous
Heard about Studypool for a while and finally tried it. Glad I did caus this was really helpful.

Anonymous
Just what I needed… fantastic!

Anonymous
Just what I needed. This document gave me a good start on tailoring my own answer.

Studypool
4.7
Trustpilot
4.5
Sitejabber
4.4