 # Year 12 mathematics formulas

Note

### Rating

Showing Page:
1/18 




P
(
E
)
=
Number of ways an event can occur
Totalnumber of all possible outcomes


 
!""!#\$"
!"!" !"
%"\$"
!"!"
%&
!"!"

!#\$%\$\$
'(&
&&'(\$
)\$
)\$*\$\$\$\$+
\$%*\$
)
*
,

-
\$\$

,
 

-
 
,
,-./ 0.
\$#\$*\$\$1\$
 
"+)\$
S
n
=
n
2
(a+l)
2\$
S
n=
n
2
[2a +
(
n1
)
d ]
'\$
)\$\$\$\$\$
*\$
1  )

,

-
.\$
r=
T
2
T
1
=
T
3
T
2
)*

,

-

3
.
 

\$
r=
T
2
T
1
=
T
3
T
2
=
T
4
T
3
=
T
n
T
n1
+&\$

,

-
.
 
.\$#\$*\$\$
\$


 
"+&\$
S
n
=
a(r
n
1)
r1
for
r
>1
S
n
=
a(1r
n
)
1r
for
r
<1
",-&".
If
r
<1 then S
=
a
1r
"%
\$

\$\$
4\$!
5
""
"/
P(1+
r
100
)
1

P(1+
r
100
)
2
.
P(1+
r
100
)
n1

P(1+
r
100
)
n
2   ### Unformatted Attachment Preview

MATHEMATICS FORMULASPROBABILITYProbability is the study of how likely an event will happenSimple probabilityThe probability of an event occurring is given by:Complementary eventsP(E) + P(not E) = 1or P(E) = 1 - P(not E)Non-mutually-exclusive eventsP(A or B) = P(A) + P(B) - P(A and B)Product ruleP(AB) = P(A) P(B)Tree diagramsP(A or B) = P(A) + P(B)SERIESA series is the infinite sum of a sequence of other numbers or termsGeneral series + Sigma notationSeries are often written in sigma notation (?); it stands for the sum of a seriesArithmetic seriesIn an arithmetic series, each term is a constant amount more than the previous term. The constant is called common differenceIf T1, T2 and T3 are consecutive terms of an arithmetic series thend = T2 - T1 = T3 - T2a + (a + d) + (a + 2d) + (a + 3d) + ? + [a + (n - 1)d] + ?is an arithmetic series with the first term a, common difference d and nth term given by:Tn = a + (n - 1)dSum of an arithmetic series Where l = last or nth termGeometric seriesIn a geometric series each term is formed by multiplying the preceding term by a constant, called the common ratioIf T1 + T2 + T3 + ? is a geometric series then In general, if T1 + T2 + T3 + T4 + ? + Tn - 1 + Tn is a geometric series thenTerms of a geometric seriesa + ar + ar2 + ar3 + ? + arn - 1 + ? is a geometric series with first term a, common ratio r and nth term given by:Tn = arn - 1Sum of a geometric seriesSum to infinity (limiting sum)Compound i ...
Purchase document to see full attachment
Review Anonymous
Just what I needed. This document gave me a good start on tailoring my own answer. Anonymous
Documents were of surprisingly high quality, and not like anything I’ve seen on other sites. Very impressed at how even a university level assignment was handled. Anonymous
Never disappoints. Thanks for being awesome! Studypool 4.7 Trustpilot 4.5 Sitejabber 4.4