Anonymous
timer Asked: Apr 28th, 2020

Question Description

Please read chapter 4 (Polymeric Matrix Materials) and summarize it in a maximum 2-page report and 10-page presentation.

References

Unformatted Attachment Preview

Composite Materials for Aircraft Structures Second Edition Alan B a k e r Cooperative Research Centre for Advanced Composite Structures, and Defence Science and Technology Organisation, Department of Defenee, Australia Stuart D u t t o n Cooperative Research Centre for Advanced Composite Structures D o n a l d Kelly University of New South Wales IId A ! A A~ EDUCATION SERIES Joseph A. Schetz Series Editor-in-Chief Virginia Polytechnic Institute and State University Blacksburg, Virginia Published by American Institute of Aeronautics and Astronautics, Inc. 1801 Alexander Bell Drive, Reston, VA 20191-4344 American Institute of Aeronautics and Astronautics, Inc., Reston, Virginia 2 3 4 5 Baker, A. A. (Alan A.) Composite materials for aircraft structures / Alan Baker, Stuart Dutton, and Donald Kelly-- 2nd ed. p. cm. - - (Education series) Rev. ed. of: Composite materials for aircraft structures / edited by B. C. Hoskin and A. A. Baker. ISBN 1-56347-540-5 1. Airplanes-Materials. 2. Compsite materials. I. Durron, Stuart. II. Kelly, Donald, Donald (Donald W.) III. Title. IV. Series: AIAA education series. TL699.C57B35 2004 629.134--dc22 200401219 Copyright © 2004 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved. Printed in the United States. No part of this publication may be reproduced, distributed, or transmitted, in any form or by any means, or stored in a database or retrieval system, without the prior written permission of the publisher. Data and information appearing in this book are for informational purposes only. AIAA is not responsible for any injury or damage resulting from use or reliance, nor does AIAA warrant that use or reliance will be free from privately owned rights. AIAA Education Series Editor-in-Chief Joseph A. Schetz Virginia Polytechnic Institute and State University Editorial Board Takahira Aoki David K. Holger University of Tokyo lowa State University Robert H. Bishop Rakesh K. Kapania University of Texas at Austin Virginia Polytechnic Institute and State University Claudio Bruno University of Rome Brian Landrum Aaron R. Byerley University of Alabama, Huntsville U.S. Air Force Academy Achille Messac Richard Colgren Rensselaer Polytechnic Institute University of Kansas Michael Mohaghegh Kajal K. Gupta The Boeing Company NASA Dryden Flight Research Center Todd J. Mosher University of Utah Albert Helfrick Embry-Riddle Aeronautical University Conrad F. Newberry Naval Postgraduate School Rikard B. Heslehurst David K. Schmidt Australian Defence Force Academy University of Colarado, Colarado Springs David M. Van Wie Johns Hopkins University Foreword This Second Edition of Composite Materials for Aircraft Structures edited by Alan Baker, Stuart Dutton and Donald Kelly is an updated, comprehensive treatment of a stimulating and challenging subject in the aerospace field with ever increasing importance. The First Edition has proven to be a valuable part of the AIAA Education Book Series, and we are delighted to welcome this new edition to the series. The lead editor of the First Edition, Brian Hoskin, has since passed away, but the new editorial team has done an admirable job of maintaining the high standards of the earlier book. The Second Edition features considerable new and updated material, and there are now 16 chapters and an appendix. The evolution of this edition is traced in the Preface. The AIAA Education Series aims to cover a very broad range of topics in the general aerospace field, including basic theory, applications and design. A complete list of titles published in the series can be found on the last pages in this volume. The philosophy of the series is to develop textbooks that can be used in a college or university setting, instructional materials for intensive continuing education and professional development courses, and also books that can serve as the basis for independent self study for working professionals in the aerospace field. We are constantly striving to expand and upgrade the scope and content of the series, so suggestions for new topics and authors are always welcome. JOSEPH A, SCHETZ Editor-in-Chief AIAA Education Series vii Foreword to first edition Composite Materials for Aircraft Structures, edited by B. C. Hoskin and A. A. Baker, is the latest addition to the AIAA Education Series inaugurated in 1984. The series represents AIAA's response to the need for textbooks and monographs in highly specialized disciplines of aeronautics and astronautics. Composite Materials for Aircraft Structures, just such a case in point, should prove particularly timely because the field has surged in composite applications. Composite Materials for Aircraft Structures provides a broad introduction to virtually all aspects of the technology of composite materials for aircraft structural applications: the basic theory of fiber reinforcements; material characteristics of the commonly used fibers, resins, and composite systems; components form and manufacture; structural mechanics of composite laminates; composite joints; environmental effects; durability and damage tolerance; nondestructive inspection (NDI) and repair procedures; aircraft applications; and airworthiness considerations. This text, expanded and updated, has been prepared from notes used in a series of lectures given at the Aeronautical Research Laboratories (ARL), Melbourne, Victoria, Australia. All lecturers were officers in either the Structures or Aircraft Materials Divisions of ARL. The table of contents gives the names of the lecturers, together with their topics. The lectures originated with a request to ARL from the Australian Department of Aviation' s Airworthiness Branch. The Director of the Aeronautical Research Laboratories, Department of Defense, Australia, has authorized publication of the expanded and updated text by AIAA. J. S. PRZEMIENIECKI Editor-in-Chief AIAA Education Series ix Preface This book is a revised and extended edition to the original 1986 book Composite Materials for Aircraft Structures, edited by Brian Hoskin and Alan Baker of the then Aeronautical Research Laboratories in Melbourne, Australia. In 1997, staff responsible for the AIAA Education Series invited Brian and Alan to produce a sequel, but sadly Brian had passed away some years ago. However, Alan was still working full-time as Research Leader of Aerospace Composite Structures at the Australian Defence Science and Technology Organisation (DSTO) and actively engaged in the research activities of the Cooperative Research Center for Advanced Composite Structures Limited (CRC-ACS), which had been established in 1991. This was fortuitous, as Alan was able to call upon the support of a relatively large team of experts working in the CRC-ACS and its member organizations, to undertake the requested revision. The work on the revised edition began in 1998, as a CRC-ACS education program task led by Alan and supported by the then Director, Dr Gordon Long. The task progressed slowly as most of the contributors were heavily committed, however it continued to be supported by the new CRC-ACS Chief Executive Officer (CEO), Dr Ian Mair. In order to assist Alan in what seemed to be an everincreasing task, two co-editors joined him: Mr Stuart Dutton, Deputy CEO of the CRC-ACS, and Prof. Don Kelly, Professor at the University of New South Wales. Stuart and Don are widely respected in the Australian composites research community for their contributions to the advancement of the design and manufacture of advanced composite structures. Whilst much has changed in composites technology since the original book was written, some topics (at the level required) have not changed that much, so they are incorporated into this book more or less unchanged. In particular, the material in the chapter on Structural Analysis by Brian Hoskin has been retained, essentially unchanged. Also, the chapter on Basic Principles, although renamed, is much the same as in the original edition. The remainder of the book is significantly different from the original, except that some of the figures have been recycled. There are now 16 chapters and an appendix, which together provide an outstanding overview and, in many areas, a very detailed expos6 of the most important aspects of composite materials for aircraft structures. Whilst this book has been produced with the support of the CRC-ACS, the efforts of each of the contributors from the CRC-ACS and its members, such as DSTO and Hawker de Havilland, are gratefully acknowledged. Finally, I wish to xii PREFACE congratulate the three co-editors for their commitment to this task over the last few years and their success in completing this valuable text book. MURRAY L. SCOTT Chief Executive Officer Cooperative Research Centre for Advanced Composite Structures Melbourne, Australia Contributors Chapter Contributors 1. Introduction and Overview A. A. Baker* 2. Basic Principles of Fiber Composite Materials A. A. Baker A. Rachinger* 3. Fibers for Polymer-Matrix Composites A. A. Baker K. H. Leong* 4. Polymeric Matrix Materials A. A. Baker J. Hodgkin ¢ M. Hou* 5. Component Form and Manufacture A. A. Baker R. Paton* T. Kruckenburg* P. Falzon* I. Crouch* S. Dutton* M. Hou* X. Liu* W. Hillier* 6. Structural Analysis B. Hoskin* D. Kelly ~ R. Li § 7. Mechanical Property Measurement M. Bannister* A. A. Baker A. Garg ¶ A. A. Kharibi** Y. W. Mai** Affiliations at the time of drafting: *DSTO, Dept of Defence, Commonwealthof Australia *CRC-ACSLtd. *Departmentof Molecular Science, CSIRO ~Universityof New South Wales ~HawkerDe HavillandAerospaceLtd. **Universityof Sydney xx CONTRIBUTORS 8. Properties of Composite Systems A. A. Baker A. Mouritzt* R. Chester* M. Bannister 9. Joining of Composite Structures A. A. Baker D. Kelly 10. Repair Technology A. A. Baker 11. Quality Assurance A. A. R. C. 12. Aircraft Applications and Design Issues S. Dutton A. A. Baker 13. Airworthiness Considerations For Airframe Structures B. C. Hoskin A. A. Baker S. Dutton D. Bond** P. Callus* 14. Three-Dimensionally Reinforced Preforms and Composites A. A. Baker K. H. Leong M. Bannister 15. Smart Structures A. A. Baker S. Galea* 16. Knowledge-Based Engineering, Computer-Aided Design, and Finite Element Analysis D. Kelly K. Wang § Affiliations at the time of drafting: *DSTO, Dept of Defence, Commonwealth of Australia *CRC-ACS Ltd. *Department of Molecular Science, CSIRO §University of New South Wales '~Hawker De Havilland Aerospace Ltd. **University of Sydney ttRoyal Melbourne Institute of Technology **Royal Australian Air Force A. Baker Crosky ~ Vodicka* Howe ¶ Contents Contributors xix Chapter 1 Introduction and Overview 1.1 General 1.2 Drivers for Improved Airframe Materials 1.3 High-Performance Fiber Composite Concepts 1.4 Fiber Reinforcements 1.5 Matrices 1.6 Polymer Matrix Composites 1.7 Non-polymeric Composite Systems 1.8 Hybrid Metal/PMC Composites References Bibliography 1 1 3 3 6 7 13 13 19 21 21 Chapter 2 Basic Principles of Fiber Composite Materials 2.1 Introduction to Fiber Composite Systems 2.2 Micromechanical Versus Macromechanical View of Composites 2.3 Micromechanics 2.4 Elastic Constants 2.5 Micromechanics Approach to Strength 2.6 Simple Estimate of Compressive Strength 2.7 Off-axis Strength in Tension 2.8 Fracture Toughness of Unidirectional Composites References 23 23 Chapter 3 Fibers for Polymer-Matrix Composites 3.1 Overview 3.2 Glass Fibers 3.3 Carbon Fibers 3.4 Boron Fibers 3.5 Silicon Carbide 3.6 Aramid Fibers 3.7 Orientated Polyethylene Fibers 3.8 Dry Fiber Forms References 55 55 57 63 67 69 71 73 74 79 23 25 26 36 42 45 47 53 xiv CONTENTS Chapter 4 Polymeric Matrix Materials 4.1 Introduction 4.2 Thermoset and Thermoplastic Polymer Matrix Materials 4.3 Thermosetting Resin Systems 4.4 Thermoplastic Systems References 81 81 86 88 108 112 Chapter 5 Component Form and Manufacture 5.1 Introduction 5.2 Outline of General Laminating Procedures 5.3 Laminating Procedures For Aircraft-Grade Composite Components 5.4 Liquid Resin Molding Techniques 5.5 Filament Winding 5.6 Pultrusion 5.7 Process Modelling 5.8 Tooling 5.9 Special Thermoplastic Techniques References 113 113 115 Chapter 6 Structural Analysis 6.1 Overview 6.2 Laminate Theory 6.3 Stress Concentration and Edge Effects 6.4 Failure Theories 6.5 Fracture Mechanics 6.6 Failure Prediction Near Stress Raisers and Damage Tolerance 6.7 Buckling 6.8 Summary References 171 171 172 191 194 203 204 207 209 209 Chapter 7 Mechanical Property Measurement 7.1 Introduction 7.2 Coupon Tests 7.3 Laboratory Simulation of Environmental Effects 7.4 Measurement of Residual Strength 7.5 Measurement of Interlaminar Fracture Energy References 213 213 216 225 227 231 237 Chapter 8 Properties of Composite Systems 8.1 Introduction 8.2 Glass-Fiber Composite Systems 8.3 Boron Fiber Composite Systems 8.4 Aramid Fiber Composite Systems 8.5 Carbon Fiber Systems 8.6 Properties of Laminates 239 239 241 247 249 257 262 117 132 140 145 149 158 162 169 CONTENTS 8.7 8.8 8.9 Impact Damage Resistance Fatigue of Composite Laminates Environmental Effects References Chapter 9 Joining of Composite Structures 9.1 9.2 9.3 9.4 Introduction Comparison Between Mechanically Fastened and Adhesively Bonded Joints Adhesively Bonded Joints Mechanically Fastened Joints References Chapter 10 Repair Technology Introduction 10.1 10.2 Assessment of the Need to Repair Classification of Types of Structure 10.3 10.4 Repair Requirements 10.5 Non-patch Repairs 10.6 Patch Repairs: General Considerations 10.7 Bonded Patch Repairs 10.8 Materials Engineering Aspects 10.9 Application Technology: In Situ Repairs 10.10 Bolted Repairs 10.11 Materials Engineering Aspects References Chapter 11 Quality Assurance 11.1 11.2 11.3 11.4 11.5 Introduction Quality Control Cure Monitoring Non-destructive Inspection of Advanced Composite Aerospace Structures Conclusion References Chapter 12 Aircraft Applications and Design Issues 12.1 12.2 12.3 12.4 12.5 12.6 Overview Applications of Glass-Fiber Composites Current Applications Design Considerations Design of Carbon-Fiber-Based Components Design Methodologies xv 263 266 276 286 289 289 290 292 337 366 369 369 369 371 371 374 377 379 390 394 395 398 401 403 403 403 408 414 430 431 435 435 435 436 447 449 462 xvi CONTENTS 12.7 12.8 A Value Engineering Approach to the Use of Composite Materials Conclusion References 466 474 474 Chapter 13 Airworthiness Considerations For Airframe Structures 13.1 Overview 13.2 Certification of Airframe Structures 13.3 The Development of Design Allowables 13.4 Demonstration of Static Strength 13.5 Demonstration of Fatigue Strength 13.6 Demonstration of Damage Tolerance 13.7 Assessment of the Impact Damage Threat References 477 477 480 482 484 486 487 487 488 Chapter 14 Three-Dimensionally Reinforced Preforms and Composites 14.1 Introduction 14.2 Stitching 14.3 Z-Pinning 14.4 Three-Dimensional Weaving 14.5 Braiding 14.6 Knitting 14.7 Non-crimp Fabrics 14.8 Conclusion References 491 491 492 498 502 507 515 519 523 523 Chapter 15.1 15.2 15.3 15.4 15 Smart Structures Introduction Engineering Approaches Selected Applications and Demonstrators Key Technology Needs References Chapter 16 Knowledge-Based Engineering, Computer-Aided Design, and Finite Element Analysis 16.1 Knowledge-Based Design Systems 16.2 Finite Element Modelling of Composite Structures 16.3 Finite Element Solution Process 16.4 Element Types 16.5 Finite Element Modelling of Composite Structures 16.6 Implementation 16.7 Design Optimization References 525 525 526 531 544 545 549 549 552 553 562 563 566 568 569 CONTENTS Appendix Overview of Some Sensors and Actuators Used for Smart Structure Applications A. 1 Piezoelectric Materials A.2 Shape Memory Alloys A.3 Optical Fiber Sensors A.4 Electrorheological Fluids A.5 Magnetostrictive Materials A.6 Micro-Electro-Mechanical Systems A.7 Comparison Of Actuators References Index 1 Introduction and Overview 1.1 General Since the first edition of this textbook 1 in 1986, the use of high-performance polymer-matrix fiber composites in aircraft structures has grown steadily, although not as dramatically as predicted at that time. This is despite the significant weight-saving and other advantages that these composites can provide. The main reason for the slower-than-anticipated take-up is the high cost of aircraft components made of composites compared with similar structures made from metal, mainly aluminum, alloys. Other factors include the high cost of certification of new components and their relatively low resistance to mechanical damage, low through-thickness strength, and (compared with titanium alloys) temperature limitations. Thus, metals will continue to be favored for many airframe applications. The most important polymer-matrix fiber material and the main subject of this and the previous book, Composite Materials for Aircraft Structures, is carbon fiber-reinforced epoxy (carbon/epoxy). Although the raw material costs of this and similar composites will continue to be relatively high, with continuing developments in materials, design, and manufacturing technology, their advantages over metals are increasing. However, competition will be fierce with continuing developments in structural metals. In aluminum alloys developments include improved toughness and corrosion resistance in conventional alloys; new lightweight alloys (such as aluminum lithium); low-cost aerospace-grade castings; mechanical alloying (high-temperature alloys); and super-plastic forming. For titanium, they include use of powder preforms, casting, and super-plastic-forming/diffusion bonding. Advanced joining techniques such as laser and friction welding, automated riveting techniques, and high-speed (numerically controlled) machining also make metallic structures more affordable. The growth in the use of composites in the airframes in selected aircraft is illustrated in Figure 1.1. However, despite this growth, the reality is, as illustrated in Figure 1.2 for the U.S. Navy F-18 fighter, that airframes (and engines) will continue to be a mix of materials. These will include composites of various types and a range of metal alloys, the balance depending on structural and economic factors. 2 COMPOSITE MATERIALS FOR AIRCRAFT STRUCTURES 40 35 30 25 20 E 15 X 10 e 5 < 0 JSF-O B2 t V-22 4~.22 Rafale AV8B F-18E/F A320 F-18A •• F-15~ F-16A 767 737 • 1970 1980 A~0 ~77 MD11 1990 C17A 2000 2010 Approximate Year of Introduction Fig. 1.1 Growth of use of advanced composites in airframe structures. In this introductory chapter, the incentives or drivers for developing improved materials for aircraft applications are discussed. This is followed by a brief overview of fiber composites, including polymer, metal, and ceramic-matrix composites as well as hybrid metal/composite laminates. Other than polymermatrix composites, these composites are not considered elsewhere in this book and so are discussed in this chapter for completeness. PERCENTOF STRUCTURALWEIGHT F/A18C/D ~ I IB I Aluminum Steel An F/A18E/F 11 Titanium Carbon Ep Other Fig. 1.2 Schematic diagram of fighter aircraft F-18 E/F. For comparison details of the structure of the earlier C/D model are also provided in the inset table. INTRODUCTION AND OVERVIEW 3 1.2 Driversfor Improved Airframe Materials Weight saving through increased specific strength or stiffness is a major driver for the development of materials for airframes. 2 However, as listed in Table 1.1, there are many other incentives for the introduction of a new material. A crucial issue in changing to a new material, even when there are clear performance benefits such as weight saving to be gained, is affordability. This includes procurement (up front) cost (currently the main criterion) and throughlife support cos ...
Student has agreed that all tutoring, explanations, and answers provided by the tutor will be used to help in the learning process and in accordance with Studypool's honor code & terms of service.

This question has not been answered.

Create a free account to get help with this and any other question!

Similar Questions
Related Tags

Brown University





1271 Tutors

California Institute of Technology




2131 Tutors

Carnegie Mellon University




982 Tutors

Columbia University





1256 Tutors

Dartmouth University





2113 Tutors

Emory University





2279 Tutors

Harvard University





599 Tutors

Massachusetts Institute of Technology



2319 Tutors

New York University





1645 Tutors

Notre Dam University





1911 Tutors

Oklahoma University





2122 Tutors

Pennsylvania State University





932 Tutors

Princeton University





1211 Tutors

Stanford University





983 Tutors

University of California





1282 Tutors

Oxford University





123 Tutors

Yale University





2325 Tutors