# queuing analysis

Anonymous

Question description

EBBD EMAIL – for Internal Use Only

To: You

From: Danny Wilco <dwilco@ebbd.com>

OK, here’s what I want to know: how often do we have more than 5 trucks, more than 6 trucks, and more than 7 trucks. What is the highest number of trucks we may have in the system with a 95% probability? And then, assuming the arrival rate of the deliveries does not change, what does the unload rate need to be so that we can service up to five trucks 95% of the time? In other words if we want a 95% probability of 5 or fewer trucks in the system at any one time, what does the unloading (service) rate need to be? Then, consider that we have two unloading teams, each able to unload trucks at the same rate. What does the unloading rate need to be for each team in order to ensure (100%) 5 or fewer trucks in the system at any time? I know we don’t have room for two unloading teams at this time, but there is a possibility we might make room in the future.

Analyze this situation and determine what we need to know and give me report. At this point in time, I am looking only for the problem to be quantified and the unload rate determined for the current situation (single server) and possible two servers.

Let me know if you have any questions.

(Top Tutor) Studypool Tutor
School: UIUC
Studypool has helped 1,244,100 students
flag Report DMCA

Brown University

1271 Tutors

California Institute of Technology

2131 Tutors

Carnegie Mellon University

982 Tutors

Columbia University

1256 Tutors

Dartmouth University

2113 Tutors

Emory University

2279 Tutors

Harvard University

599 Tutors

Massachusetts Institute of Technology

2319 Tutors

New York University

1645 Tutors

Notre Dam University

1911 Tutors

Oklahoma University

2122 Tutors

Pennsylvania State University

932 Tutors

Princeton University

1211 Tutors

Stanford University

983 Tutors

University of California

1282 Tutors

Oxford University

123 Tutors

Yale University

2325 Tutors